scholarly journals Ionospheric Plasma Density Measurements by Swarm Langmuir Probes: Limitations and possible Corrections

2019 ◽  
Author(s):  
Piero Diego ◽  
Igino Coco ◽  
Igor Bertello ◽  
Maurizio Candidi ◽  
Pietro Ubertini

Abstract. The ESA Swarm constellation includes three satellites, which have been observing the Earth's ionosphere since November 2013, following polar orbits. The main ionospheric plasma parameters, such as electron density and temperature, are measured by means of Langmuir probes (Lps); electron density measurements, in particular, are nowadays largely considered as qualitatively reliable, and have been used in several published papers to date. In this work, we aim to discuss how some technical characteristics of Swarm Lps, such as their size and location on board the satellites, as well as the operational setup of the instruments, could lead to limitations in their accuracy if one underestimates the influence of satellite proximity, and the larger extension of the plasma sheath surrounding the probes due to the operational point of the voltage ripple. Two specific corrections are proposed for the assessment and possible mitigation of such effects. Finally, a comparison is made with electron density measurements from CSES-01 mission, which relies on Langmuir probes as well, whose geometry and operating mode are standard.

2020 ◽  
Author(s):  
Irina Zakharenkova ◽  
Iurii Cherniak ◽  
Sergey Sokolovskiy ◽  
William Schreiner ◽  
Qian Wu ◽  
...  

<p>Many of the modern Low-Earth-Orbiting satellites are now equipped with dual-frequency GPS receivers for Radio Occultation (RO) and Precise Orbit Determination (POD). The space-borne GPS measurements can be successfully utilized for ionospheric climatology and space weather monitoring. The combination of GPS measurements, which include RO observations and POD measurements from the upward-looking GPS antenna, provides information about electron density distribution (profile) below the satellite orbit and an integrated Total Electron Content (TEC) above the satellite representing an important data source for electron density climatology above the F2 layer peak on a global scale. We demonstrate the advantages of using space-borne LEO GPS measurements, both RO and upward-looking, for Space Weather activity monitoring including specification of ionospheric plasma density structures at different altitudinal domains of the ionosphere in quiet and disturbed conditions. After the great success of the COSMIC-1 (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission operating since 2006, the six COSMIC-2 satellites were launched into a 24 deg inclination orbit in June 2019. The COSMIC-2 scientific payloads with the advanced Tri-GNSS Radio-Occultation Receiver System provide multiple observation types including multi-GNSS TEC (limb and overhead), RO electron density profiles, amplitude/phase scintillation indices, in-situ ion densities and velocities. The COSMIC-2 advanced instruments allow detection of ionospheric plasma density structures of various scales, and the monitoring of high-rate amplitude and phase scintillations both above and below a satellite orbit. The COSMIC-2 multi-instrumental observations will contribute to a better understanding of the equatorial ionosphere morphology and future forecasting of ionospheric irregularities and radio wave scintillations that harmfully affect satellite-to-Earth communication and navigation systems. We present results of post-event analyses for severe space weather events demonstrating a great potential and contribution of the COSMIC-1/2 missions in combination with the ground-based GNSS receivers and other LEO missions like C/NOFS, DMSP, MetOp, TerraSAR-X, and Swarm for monitoring the space weather effects in the Earth’s ionosphere.</p>


2000 ◽  
Vol 25 (1) ◽  
pp. 109-112 ◽  
Author(s):  
C.T. Steigies ◽  
D. Block ◽  
M. Hirt ◽  
A. Piel ◽  
H. Thiemann

2018 ◽  
Vol 123 (11) ◽  
pp. 9711-9725 ◽  
Author(s):  
J. J. P. Paulsson ◽  
A. Spicher ◽  
L. B. N. Clausen ◽  
J. I. Moen ◽  
W. J. Miloch

BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 1-6
Author(s):  
Vijay Kumar Jha ◽  
Lekha Nath Mishra ◽  
Bijoyendra Narayan

In this piece of study, the design and development of a low cost vacuum chamber with different ports are mentioned. I-V characteristic of Langmuir Probe is obtained using the primary data of the experimental set up for ‘single probe method’ in nitrogen seeded arc plasma at atmospheric pressure The floating potential was found to be 36V and the electron density to be 1.24 ´ 104 K. Variation in electron density of the arc plasma with probe potential is also studied at low pressure range from 10 Nm-2 (0.10 mbar) to 20 Nm-2.BIBECHANA 16 (2019) 1-6


2020 ◽  
Author(s):  
Yi-Wun Chen ◽  
Chi-Kuang Chao

<p>  A remote sensing satellite, FORMOSAT-5, developed by National Space Organization (NSPO) carried a piggyback science payload, Advanced Ionospheric Payload (AIP), for space weather and seismo-ionospheric precursor study.  To meet the science requirements, AIP could be operated in different measurement modes to obtain various plasma parameters.  The first AIP measurement was performed on 7 September 2017 to obtain the first-orbit data and started routine operation in November the same year.  Global ion density and ion velocity/temperature distributions were available every two days and four days, respectively.  AIP was regularly operated in a sampling rate 1,024 Hz to maximize useful science data.  In this poster, global occurrence rates of pre-midnight low-latitude ionospheric plasma density irregularities will be shown from AIP science data collected since winter 2017.  The results indicate that seasonal variations of the occurrence rates during the solar minimum (2017/11-2019/12) are distributed very similar to but have lower magnitudes than those observations by ROCSAT-1/Ionospheric Plasma and Electrodynamics Instrument dataset (1999-2004) during solar maximum.</p>


2021 ◽  
Author(s):  
Yiwen Liu ◽  
Chao Xiong ◽  
Xin Wan

<p>The mid-latitude ionospheric trough (MIT) is a well-known feature in the topside ionosphere and plasmasphere. In this report, we investigated the plasma irregularities inside the MIT region based on the high-resolution (2 Hz) measurements of electron density and temperature from the Swarm satellite. We developed a method to automatically identify the mid-latitude trough from Swarm in-situ density measurements, and the small-scale irregularities inside MIT region can also be well determined by considering appropriate thresholds of both the relative (∆Ne/Ne) and absolute (∆Ne) density fluctuations. Further statistics has been performed based-on the multi-years database of identified MITs and irregularities from Swarm. Finally, we provided for the first time the seasonal and magnetic local time distributions of irregularities within the MIT region, and the involved plasma instabilities that cause the irregularities at the MIT region have been discussed.</p>


2009 ◽  
Vol 27 (6) ◽  
pp. 2439-2448 ◽  
Author(s):  
F. Kamalabadi ◽  
J. M. Comberiate ◽  
M. J. Taylor ◽  
P.-D. Pautet

Abstract. The SpreadFEx campaign was conducted with the goal of investigating potential neutral atmospheric dynamics influences in seeding plasma instabilities and bubbles extending to higher altitudes from September to November 2005, with primary measurements in Brazil. In this paper, we present the results of space-based UV and ground-based optical observations in support of this campaign. Specifically, we present multi-dimensional electron density images obtained tomographically from the 135.6 nm emissions measured by the GUVI instrument aboard the TIMED satellite that result from radiative recombination of O+ and compare those with the corresponding 630.0 nm OI images recorded in the Brazilian sector. The GUVI results provide altitude vs. longitude information on depleted regions in the ionospheric plasma density that are complementary to the single-height latitude-longitude images obtained with the airglow imager.


1975 ◽  
Vol 53 (22) ◽  
pp. 2485-2490
Author(s):  
V. Potočnik ◽  
J. Meyer

For verifying some theoretical predictions of light scattering from magnetized plasmas, a stable pulsed helium arc discharge in a magnetic field up to 5 teslas has been built. The arc has been investigated at filling pressures of 2 to 5 Torr and plasma currents between 1 and 5 kA. Plasma parameters were measured at a magnetic field of 4 teslas and a pressure of 3 Torr. At these values of the magnetic field and the filling pressure the arc is steady, approximately cylindrically symmetric up to a plasma current of 2.8 kA.Time dependence and radial distribution of the electron density and temperature have been determined from spectroscopic measurements, laser interferometry, and laser scattering. The latter two techniques were used successfully for the first time on a magnetically stabilized arc to measure the electron density and temperature in the hot core of the arc. The axial electron density is 1.2 × 1016cm−3 and is approximately constant over the arc cross section in the high temperature region as predicted by theory. The axial temperature is 145 000 K. Thus the arc design and the plasma properties are suitable for scattering experiments.


Sign in / Sign up

Export Citation Format

Share Document