scholarly journals Experimental set up for the study of plasma parameters in seeded arc plasma using Langmuir Probes inside low-cost vacuum chamber

BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 1-6
Author(s):  
Vijay Kumar Jha ◽  
Lekha Nath Mishra ◽  
Bijoyendra Narayan

In this piece of study, the design and development of a low cost vacuum chamber with different ports are mentioned. I-V characteristic of Langmuir Probe is obtained using the primary data of the experimental set up for ‘single probe method’ in nitrogen seeded arc plasma at atmospheric pressure The floating potential was found to be 36V and the electron density to be 1.24 ´ 104 K. Variation in electron density of the arc plasma with probe potential is also studied at low pressure range from 10 Nm-2 (0.10 mbar) to 20 Nm-2.BIBECHANA 16 (2019) 1-6

2020 ◽  
Vol 6 (1) ◽  
pp. 113-116
Author(s):  
V. K. Jha ◽  
L. N. Mishra ◽  
B. Narayan

Arc plasma is generated using low voltage dc power supply for the measurement of plasma parameters such as floating potential and ion-concentration in the plasma seeded with molybdenum. Langmuir moving probe is used in order to measure the probe current at different values of the dc potential applied on the probe. A graph is plotted between the probe current and the probe potential, based on data at the atmospheric pressure, using the experimental set up in the gas discharge chamber for the single probe method. The floating potential is calculated to be 32V, and the average ion-concentration to be 1.43 - 10e16m3.


2020 ◽  
Vol 1492 (1) ◽  
pp. 012003
Author(s):  
M Dimitrova ◽  
M Tomes ◽  
Tsv Popov ◽  
R Dejarnac ◽  
J Stockel ◽  
...  

Abstract Langmuir probes are used to study the plasma parameters in the divertor during deuterium gas puff injection on the high- (HFS) or low-field sides (LFS). The probe data were processed to evaluate the plasma potential and the electron temperatures and densities. A difference was found in the plasma parameters depending on the gas puff location. In the case of a gas puff on the LFS, the plasma parameters changed vastly, mainly in the inner divertor – the plasma potential, the ion saturation-current density and the electron temperature dropped. After the gas puff, the electron temperature changed from 10-15 eV down to within the 5-9 eV range. As a result, the parallel heat-flux density decreased. At the same time, in the outer divertor the plasma parameters remained the same. We thus concluded that using a gas puff on the LFS will facilitate reaching a detachment regime by increasing the density of puffed neutrals. When the deuterium gas puff was on the HFS, the plasma parameters in the divertor region remained almost the same before and during the puff. The electron temperature decreased with just few eV as a result of the increased amount of gas in the vacuum chamber.


2019 ◽  
Author(s):  
Piero Diego ◽  
Igino Coco ◽  
Igor Bertello ◽  
Maurizio Candidi ◽  
Pietro Ubertini

Abstract. The ESA Swarm constellation includes three satellites, which have been observing the Earth's ionosphere since November 2013, following polar orbits. The main ionospheric plasma parameters, such as electron density and temperature, are measured by means of Langmuir probes (Lps); electron density measurements, in particular, are nowadays largely considered as qualitatively reliable, and have been used in several published papers to date. In this work, we aim to discuss how some technical characteristics of Swarm Lps, such as their size and location on board the satellites, as well as the operational setup of the instruments, could lead to limitations in their accuracy if one underestimates the influence of satellite proximity, and the larger extension of the plasma sheath surrounding the probes due to the operational point of the voltage ripple. Two specific corrections are proposed for the assessment and possible mitigation of such effects. Finally, a comparison is made with electron density measurements from CSES-01 mission, which relies on Langmuir probes as well, whose geometry and operating mode are standard.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


Landslides ◽  
2021 ◽  
Author(s):  
Lorenzo Brezzi ◽  
Alberto Bisson ◽  
Davide Pasa ◽  
Simonetta Cola

AbstractA large number of landslides occur in North-Eastern Italy during every rainy period due to the particular hydrogeological conditions of this area. Even if there are no casualties, the economic losses are often significant, and municipalities frequently do not have sufficient financial resources to repair the damage and stabilize all the unstable slopes. In this regard, the research for more economically sustainable solutions is a crucial challenge. Floating composite anchors are an innovative and low-cost technique set up for slope stabilization: it consists in the use of passive sub-horizontal reinforcements, obtained by coupling a traditional self-drilling bar with some tendons cemented inside it. This work concerns the application of this technique according to the observational method described within the Italian and European technical codes and mainly recommended for the design of geotechnical works, especially when performed in highly uncertain site conditions. The observational method prescribes designing an intervention and, at the same time, using a monitoring system in order to correct and adapt the project during realization of the works on the basis of new data acquired while on site. The case study is the landslide of Cischele, a medium landslide which occurred in 2010 after an exceptional heavy rainy period. In 2015, some floating composite anchors were installed to slow down the movement, even if, due to a limited budget, they were not enough to ensure the complete stabilization of the slope. Thanks to a monitoring system installed in the meantime, it is now possible to have a comparison between the site conditions before and after the intervention. This allows the evaluation of benefits achieved with the reinforcements and, at the same time, the assessment of additional improvements. Two stabilization scenarios are studied through an FE model: the first includes the stabilization system built in 2015, while the second evaluates a new solution proposed to further increase the slope stability.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kuo Men ◽  
Jian-Rong Dai ◽  
Ming-Hui Li ◽  
Xin-Yuan Chen ◽  
Ke Zhang ◽  
...  

Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device.Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images.Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously.Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.


2021 ◽  
Vol 8 (1) ◽  
pp. e000863
Author(s):  
Robert C Free ◽  
Matthew Richardson ◽  
Camilla Pillay ◽  
Kayleigh Hawkes ◽  
Julie Skeemer ◽  
...  

BackgroundA specialist pneumonia intervention nursing (SPIN) service was set up across a single National Health Service Trust in an effort to improve clinical outcomes. A quality improvement evaluation was performed to assess the outcomes associated with implementing the service before (2011–2013) and after (2014–2016) service implementation.ResultsThe SPIN service reviewed 38% of community-acquired pneumonia (CAP) admissions in 2014–2016. 82% of these admissions received antibiotic treatment in <4 hours (68.5% in the national audit). Compared with the pre-SPIN period, there was a significant reduction in both 30-day (OR=0.77 (0.70–0.85), p<0.0001) and in-hospital (OR=0.66 (0.60–0.73), p<0.0001) mortality after service implementation, with a review by the service showing the largest independent 30-day mortality benefit (HR=0.60 (0.53–0.67), p<0.0001). There was no change in length of stay (median 6 days).ConclusionImplementation of a SPIN service improved adherence to BTS guidelines and achieved significant reductions in CAP-associated mortality. This enhanced model of care is low cost, highly effective and readily adoptable in secondary care.


Sign in / Sign up

Export Citation Format

Share Document