scholarly journals Dust sputtering within the inner heliosphere

2020 ◽  
Author(s):  
Carsten Baumann ◽  
Margaretha Myrvang ◽  
Ingrid Mann

Abstract. The aim of this study is to investigate how sputtering by impacting solar wind particles influence the lifetime of dust particles in the inner heliosphere near the Sun. We consider three typical dust materials: silicate, Fe0.4Mg0.6O and carbon and describe their sputtering yields based on atomic yields given by the Stopping and Range of Ions in Matter (SRIM) package. The influence of the solar wind is characterized by plasma density, solar wind speed and solar wind composition and we assume for these parameters values that are typical for fast solar wind, slow solar wind and CME conditions to calculate the sputtering lifetimes of dust. To compare the sputtering lifetimes to typical sublimation lifetimes we use temperature estimates based on Mie calculations and material vapour pressure derived with the chemical equilibrium code MAGMA. We also compare the sputtering lifetimes to the Poynting-Robertson lifetime and to the collision lifetime. We present a set of sputtering rates and lifetimes that can be used for estimating dust destruction in the fast and slow solar wind and during CME conditions. Our results can be applied to solid particles of a few nm and larger. The sputtering lifetimes increase linearly with size of particles. We show that sputtering rates increase during CME conditions, primarily because of the high number densities of heavy ions in the CME plasma. The shortest sputtering lifetimes we find are for silicate, followed by Fe0.4Mg0.6O and carbon. In a comparison between sputtering and sublimation lifetimes we concentrate on the nanodust population. The comparison shows that sublimation is the faster destruction process within 0.1 AU for Fe0.4Mg0.6O, within 0.05 AU for carbon dust and within 0.07 AU for silicate dust. The destruction by sputtering can play a role in the vicinity of the Sun. We discuss our findings in the context of recent F-corona intensity measurements onboard Parker-Solar-Probe.

2020 ◽  
Vol 38 (4) ◽  
pp. 919-930
Author(s):  
Carsten Baumann ◽  
Margaretha Myrvang ◽  
Ingrid Mann

Abstract. The aim of this study is to investigate through modelling how sputtering by impacting solar wind ions influences the lifetime of dust particles in the inner heliosphere near the Sun. We consider three typical dust materials, silicate, Fe0.4Mg0.6O, and carbon, and describe their sputtering yields based on atomic yields given by the Stopping and Range of Ions in Matter (SRIM) package. The influence of the solar wind is characterized by plasma density, solar wind speed, and solar wind composition, and we assume for these parameter values that are typical for fast solar wind, slow solar wind, and coronal mass ejection (CME) conditions to calculate the sputtering lifetimes of dust. To compare the sputtering lifetimes to typical sublimation lifetimes, we use temperature estimates based on Mie calculations and material vapour pressure derived with the MAGMA chemical equilibrium code. We also compare the sputtering lifetimes to the Poynting–Robertson lifetime and to the collision lifetime. We present a set of sputtering rates and lifetimes that can be used for estimating dust destruction in the fast and slow solar wind and during CME conditions. Our results can be applied to solid particles of a few nanometres and larger. The sputtering lifetimes increase linearly with the size of particles. We show that sputtering rates increase during CME conditions, primarily because of the high number densities of heavy ions in the CME plasma. The shortest sputtering lifetimes we find are for silicate, followed by Fe0.4Mg0.6O and carbon. In a comparison between sputtering and sublimation lifetimes we concentrate on the nanodust population. The comparison shows that sublimation is the faster destruction process within 0.1 AU for Fe0.4Mg0.6O, within 0.05 AU for carbon dust, and within 0.07 AU for silicate dust. The destruction by sputtering can play a role in the vicinity of the Sun. We discuss our findings in the context of recent F-corona intensity measurements onboard Parker Solar Probe.


2020 ◽  
Vol 494 (3) ◽  
pp. 3642-3655 ◽  
Author(s):  
Allan R Macneil ◽  
Mathew J Owens ◽  
Robert T Wicks ◽  
Mike Lockwood ◽  
Sarah N Bentley ◽  
...  

ABSTRACT Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfvénic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 au, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3 and 1 au being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend.


2020 ◽  
Author(s):  
Karine Issautier ◽  
Mingzhe Liu ◽  
Michel Moncuquet ◽  
Nicole Meyer-Vernet ◽  
Milan Maksimovic ◽  
...  

<p>We present in situ properties of electron density and temperature in the inner heliosphere obtained during the three first solar encounters at 35 solar radii of the Parker Solar Probe mission. These preliminary results, recently shown by Moncuquet et al., ApJS, 2020, are obtained from the analysis of the plasma quasi-thermal noise (QTN) spectrum measured by the radio RFS/FIELDS instrument along the trajectories extending between 0.5 and 0.17 UA from the Sun, revealing different states of the emerging solar wind, five months apart. The temperature of the weakly collisional core population varies radially with a power law index of about -0.8, much slower than adiabatic, whereas the temperature of the supra-thermal population exhibits a much flatter radial variation, as expected from its nearly collisionless state. These measured temperatures are close to extrapolations towards the Sun of Helios measurements.</p><p>We also present a statistical study from these in situ electron solar wind parameters, deduced by QTN spectroscopy, and compare the data to other onboard measurements. In addition, we focus on the large-scale solar wind properties. In particular, from the invariance of the energy flux, a direct relation between the solar wind speed and its density can be deduced, as we have already obtained based on Wind continuous in situ measurements (Le Chat et al., Solar Phys., 2012). We study this anti-correlation during the three first solar encounters of PSP.</p>


2021 ◽  
Author(s):  
Samantha Wallace ◽  
Nicholeen M. Viall ◽  
Charles N. Arge

<p>Solar wind formation can be separated into three physical steps – source, release, and acceleration – that each leave distinct observational signatures on plasma parcels.  The Wang-Sheeley-Arge (WSA) model driven by Air Force Data Assimilative Photospheric Flux Transport (ADAPT) time-dependent photospheric field maps now has the ability to connect in situ observations more rigorously to their precise source at the Sun, allowing us to investigate the physical processes involved in solar wind formation.   In this talk, I will highlight my PhD dissertation research in which we use the ADAPT-WSA model to either characterize the solar wind emerging from specific sources, or investigate the formation process of various solar wind populations.  In the first study, we test the well-known inverse relationship between expansion factor (f<sub>s</sub>) and observed solar wind speed (v<sub>obs</sub>) for solar wind that emerges from a large sampling of pseudostreamers, to investigate if field line expansion plays a physical role in accelerating the solar wind from this source region.  We find that there is no correlation between f<sub>s</sub> and v<sub>obs</sub> at pseudostreamer cusps. In the second study, we determine the source locations of the first identified quasiperiodic density structures (PDSs) inside 0.6 au. Our modeling provides confirmation of these events forming via magnetic reconnection both near to and far from the heliospheric current sheet (HCS) – a direct test of the Separatrix-web (S-web) theory of slow solar wind formation.  In the final study, we use our methodology to identify the source regions of the first observations from the Parker Solar Probe (PSP) mission.  Our modeling enabled us to characterize the closest to the Sun observed coronal mass ejection (CME) to date as a streamer blowout.  We close with future ways that ADAPT-WSA can be used to test outstanding questions of solar wind formation.</p>


2021 ◽  
Author(s):  
Tereza Durovcova ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>Two large-scale interaction regions between the fast solar wind emanating from coronal holes and the slow solar wind coming from streamer belt are usually distinguished. When the fast stream pushes up against the slow solar wind ahead of it, a compressed interaction region that co-rotates with the Sun (CIR) is created. It was already shown that the relative abundance of alpha particles, which usually serve as one of solar wind source identifiers can change within this region. By symmetry, when the fast stream outruns the slow stream, a corotating rarefaction region (CRR) is formed. CRRs are characterized by a monotonic decrease of the solar wind speed, and they are associated with the regions of small longitudinal extent on the Sun. In our study, we use near-Earth measurements complemented by observations at different heliocentric distances, and focus on the behavior of alpha particles in the CRRs because we found that the large variations of the relative helium abundance (AHe) can also be observed there. Unlike in the CIRs, these variations are usually not connected with the solar wind speed and alpha-proton relative drift changes. We thus apply a superposed-epoch analysis of identified CRRs with a motivation to determine the global profile of alpha particle parameters through these regions. Next, we concentrate on the cases with largest AHe variations and investigate whether they can be associated with the changes of the solar wind source region or whether there is a relation between the AHe variations and the non-thermal features in the proton velocity distribution functions like the temperature anisotropy and/or presence of the proton beam.</p>


2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


2008 ◽  
Vol 4 (S257) ◽  
pp. 271-277
Author(s):  
Bojan Vršnak ◽  
Dijana Vrbanec ◽  
Jaša Čalogović ◽  
Tomislav Žic

AbstractDynamics of coronal mass ejections (CMEs) is strongly affected by the interaction of the erupting structure with the ambient magnetoplasma: eruptions that are faster than solar wind transfer the momentum and energy to the wind and generally decelerate, whereas slower ones gain the momentum and accelerate. Such a behavior can be expressed in terms of “aerodynamic” drag. We employ a large sample of CMEs to analyze the relationship between kinematics of CMEs and drag-related parameters, such as ambient solar wind speed and the CME mass. Employing coronagraphic observations it is demonstrated that massive CMEs are less affected by the aerodynamic drag than light ones. On the other hand, in situ measurements are used to inspect the role of the solar wind speed and it is shown that the Sun-Earth transit time is more closely related to the wind speed than to take-off speed of CMEs. These findings are interpreted by analyzing solutions of a simple equation of motion based on the standard form for the drag acceleration. The results show that most of the acceleration/deceleration of CMEs on their way through the interplanetary space takes place close to the Sun, where the ambient plasma density is still high. Implications for the space weather forecasting of CME arrival-times are discussed.


2018 ◽  
Vol 36 (6) ◽  
pp. 1607-1630 ◽  
Author(s):  
Eckart Marsch

Abstract. This paper reviews recent aspects of solar wind physics and elucidates the role Alfvén waves play in solar wind acceleration and turbulence, which prevail in the low corona and inner heliosphere. Our understanding of the solar wind has made considerable progress based on remote sensing, in situ measurements, kinetic simulation and fluid modeling. Further insights are expected from such missions as the Parker Solar Probe and Solar Orbiter. The sources of the solar wind have been identified in the chromospheric network, transition region and corona of the Sun. Alfvén waves excited by reconnection in the network contribute to the driving of turbulence and plasma flows in funnels and coronal holes. The dynamic solar magnetic field causes solar wind variations over the solar cycle. Fast and slow solar wind streams, as well as transient coronal mass ejections, are generated by the Sun's magnetic activity. Magnetohydrodynamic turbulence originates at the Sun and evolves into interplanetary space. The major Alfvén waves and minor magnetosonic waves, with an admixture of pressure-balanced structures at various scales, constitute heliophysical turbulence. Its spectra evolve radially and develop anisotropies. Numerical simulations of turbulence spectra have reproduced key observational features. Collisionless dissipation of fluctuations remains a subject of intense research. Detailed measurements of particle velocity distributions have revealed non-Maxwellian electrons, strongly anisotropic protons and heavy ion beams. Besides macroscopic forces in the heliosphere, local wave–particle interactions shape the distribution functions. They can be described by the Boltzmann–Vlasov equation including collisions and waves. Kinetic simulations permit us to better understand the combined evolution of particles and waves in the heliosphere.


Sign in / Sign up

Export Citation Format

Share Document