scholarly journals On the lifetime and extent of an auroral westward flow channel (AWFC) observed during a magnetospheric substorm

2003 ◽  
Vol 21 (4) ◽  
pp. 893-913 ◽  
Author(s):  
M. L. Parkinson ◽  
M. Pinnock ◽  
H. Ye ◽  
M. R. Hairston ◽  
J. C. Devlin ◽  
...  

Abstract. A -190-nT negative bay in the geomagnetic X component measured at Macquarie Island ( -65° L) showed that an ionospheric substorm occurred during 09:58 to 11:10 UT on 27 February 2000. Signatures of an auroral westward flow channel (AWFC) were observed nearly simultaneously in the backscatter power, LOS Doppler velocity, and Doppler spectral width measured using the Tasman International Geospace Environment Radar (TIGER), a Southern Hemisphere HF SuperDARN radar. Many of the characteristics of the AWFC were similar to those occurring during a polarisation jet (PJ), or subauroral ion drift (SAID) event, and suggest that it may have been a pre-cursor to a fully developed, intense westward flow channel satisfying all of the criteria defining a PJ/SAID. A beam-swinging analysis showed that the westward drifts (poleward electric field) associated with the flow channel were very structured in time and space, but the smoothed velocities grew to ~ 800 ms-1 (47 mVm-1) during the 22-min substorm onset interval 09:56 to 10:18 UT. Maximum west-ward drifts of >1.3 km s-1 (>77 mVm-1) occurred during a ~ 5-min velocity spike, peaking at 10:40 UT during the expansion phase. The drifts decayed rapidly to ~ 300 ms-1 (18 mVm-1) during the 6-min recovery phase interval, 11:04 to 11:10 UT. Overall, the AWFC had a lifetime of 74 min, and was located near -65° L in the evening sector west of the Harang discontinuity. The large westward drifts were confined to a geographic zonal channel of longitudinal ex-tent >20° (>1.3 h magnetic local time), and latitudinal width ~2° L. Using a half-width of ~ 100 km in latitude, the peak electric potential was >7.7 kV. However, a transient velocity of >3.1 km s-1 with potential >18.4 kV was observed further poleward at the end of the recovery phase. Auroral oval boundaries determined using DMSP measurements suggest the main flow channel overlapped the equatorward boundary of the diffuse auroral oval. During the ~ 2-h interval following the flow channel, an ~ 3° L wide band of scatter was observed drifting slowly toward the west, with speeds gradually decaying to ~ 50 ms-1 (3 mVm -1). The scatter was observed extending past the Harang discontinuity, and had Doppler signatures characteristic of the main ionospheric trough, implicating the flow channel in the further depletion of F-region plasma. The character of this scatter was in contrast with the character of the scatter drifting toward the east at higher latitude.Key words. Ionosphere (auroral ionosphere; electric fields and currents; ionosphere-magnetospehere interactions) Magnetospheric physics (storms and substorms)

2009 ◽  
Vol 27 (1) ◽  
pp. 261-278 ◽  
Author(s):  
B. A. Carter ◽  
R. A. Makarevich

Abstract. The dual Tasman International Geospace Environment Radar (TIGER) HF radars regularly observe E-region echoes at sub-auroral magnetic latitudes 58°–60° S including during geomagnetic storms. We present a statistical analysis of E-region backscatter observed in a period of ~2 years (late 2004–2006) by the TIGER Bruny Island and Unwin HF radars, with particular emphasis on storm-time backscatter. It is found that the HF echoes normally form a 300-km-wide band at ranges 225–540 km. In the evening sector during geomagnetic storms, however, the HF echoes form a curved band joining to the F-region band at ~700 km. The curved band lies close to the locations where the geometric aspect angle is zero, implying little to no refraction during geomagnetic storms, which is an opposite result to what has been reported in the past. The echo occurrence, Doppler velocity, and spectral width of the HF echoes are examined in order to determine whether new HF echo types are observed at sub-auroral latitudes, particularly during geomagnetic storms. The datasets of both TIGER radars are found to be dominated by low-velocity echoes. A separate population of storm-time echoes is also identified within the datasets of both radars with most of these echoes showing similar characteristics to the low-velocity echo population. The storm-time backscatter observed by the Bruny Island radar, on the other hand, includes near-range echoes (r<405 km) that exhibit some characteristics of what has been previously termed the High Aspect angle Irregularity Region (HAIR) echoes. We show that these echoes appear to be a storm-time phenomenon and further investigate this population by comparing their Doppler velocity with the simultaneously measured F- and E-region irregularity velocities. It is suggested that the HAIR-like echoes are observed only by HF radars with relatively poor geometric aspect angles when electron density is low and when the electric field is particularly high.


2003 ◽  
Vol 21 (8) ◽  
pp. 1847-1868 ◽  
Author(s):  
M. L. Parkinson ◽  
J. C. Devlin ◽  
H. Ye ◽  
C. L. Waters ◽  
P. L. Dyson ◽  
...  

Abstract. The statistical occurrence of decametre-scale ionospheric irregularities, average line-of-sight (LOS) Doppler velocity, and Doppler spectral width in the sub-auroral, auroral, and polar cap ionosphere ( - 57°L to - 88°L) has been investigated using echoes recorded with the Tasman International Geospace Environment Radar (TIGER), a SuperDARN radar located on Bruny Island, Tasmania (147.2° E, 43.4° S geographic; - 54.6 °L). Results are shown for routine soundings made on the magnetic meridian beam 4 and the near zonal beam 15 during the sunspot maximum interval December 1999 to November 2000. Most echoes were observed in the nightside ionosphere, typically via 1.5-hop propagation near dusk and then via 0.5-hop propagation during pre-midnight to dawn. Peak occurrence rates on beam 4 were often > 60% near magnetic midnight and ~ - 70 °L. They increased and shifted equatorward and toward pre-midnight with increasing Kp (i.e. Bz southward). The occurrence rates remained very high for Kp > 4, de-spite enhanced D-region absorption due to particle precipitation. Average occurrence rates on beam 4 exhibited a relatively weak seasonal variation, consistent with known longitudinal variations in auroral zone magnetic activity (Basu, 1975). The average echo power was greatest between 23 and 07 MLT. Two populations of echoes were identified on both beams, those with low spectral width and a mode value of ~ 9 ms-1 (bin size of 2 ms-1) concentrated in the auroral and sub-auroral ionosphere (population A), and those with high spectral width and a mode value of ~ 70 ms-1 concentrated in the polar cap ionosphere (population B). The occurrence of population A echoes maximised post-midnight because of TIGER’s lower latitude, but the subset of the population A echoes observed near dusk had characteristics reminiscent of "dusk scatter" (Ruohoniemi et al., 1988). There was a dusk "bite out" of large spectral widths between ~ 15 and 21 MLT and poleward of - 67 °L, and a pre-dawn enhancement of large spectral widths between ~  03 and 07 MLT, centred on ~ - 61 °L. The average LOS Doppler velocities revealed that frequent westward jets of plasma flow occurred equatorward of, but overlapping, the diffuse auroral oval in the pre-midnight sector.Key words. Ionosphere (auroral ionosphere; electric fields and currents, ionospheric irregularities)


2005 ◽  
Vol 23 (7) ◽  
pp. 2531-2557 ◽  
Author(s):  
S. Figueiredo ◽  
G. T. Marklund ◽  
T. Karlsson ◽  
T. Johansson ◽  
Y. Ebihara ◽  
...  

Abstract. Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval. Event 1 occurs during the end of the recovery phase of a strong substorm. A system of auroral arcs associated with convergent electric field structures, with a maximum perpendicular potential drop of about ~10 kV, and upflowing field-aligned currents with densities of 3 µA/m2 (mapped to the ionosphere), was detected at the boundary between the Plasma Sheet Boundary Layer (PSBL) and the Plasma Sheet (PS). The auroral arc structures evolve in shape and in magnitude on a timescale of tens of minutes, merging, broadening and intensifying, until finally fading away after about 50 min. Throughout this time, both the PS region and the auroral arc structure in its poleward part remain relatively fixed in space, reflecting the rather quiet auroral conditions during the end of the substorm. The auroral upward acceleration region is shown for this event to extend beyond 3.9 Earth radii altitude. Event 2 occurs during a more active period associated with the expansion phase of a moderate substorm. Images from the Defense Meteorological Satellite Program (DMSP) F13 spacecraft show that the Cluster spacecraft crossed the horn region of a surge-type aurora. Conjugated with the Cluster spacecraft crossing above the surge horn, the South Pole All Sky Imager recorded the motion and the temporal evolution of an east-west aligned auroral arc, 30 to 50 km wide. Intense electric field variations are measured by the Cluster spacecraft when crossing above the auroral arc structure, collocated with the density gradient at the PS poleward boundary, and coupled to intense upflowing field-aligned currents with mapped densities of up to 20 µA/m2. The surge horn consists of multiple arc structures which later merge into one structure and intensify at the PS poleward boundary. The surge horn and the associated PS region moved poleward with a velocity at the ionospheric level of 0.5 km/s, following the large-scale poleward expansion of the auroral oval associated with the substorm expansion phase. Keywords. Ionosphere (Ionosphere-magnetosphere interacctions; Electric fields and currents; Particle acceleration)


2004 ◽  
Vol 22 (4) ◽  
pp. 1213-1231 ◽  
Author(s):  
J. A. Cumnock ◽  
L. G. Blomberg

Abstract. We present two event studies encompassing detailed relationships between plasma convection, field-aligned current, auroral emission, and particle precipitation boundaries. We illustrate the influence of the Interplanetary Magnetic Field By component on theta aurora development by showing two events during which the theta originates on both the dawn and dusk sides of the auroral oval. Both theta then move across the entire polar region and become part of the opposite side of the auroral oval. Electric and magnetic field and precipitating particle data are provided by DMSP, while the Polar UVI instrument provides measurements of auroral emissions. Utilizing satellite data as inputs, the Royal Institute of Technology model provides the high-latitude ionospheric electrostatic potential pattern calculated at different times during the evolution of the theta aurora, resulting from a variety of field-aligned current configurations associated with the changing global aurora. Key words. Ionosphere (auroral ionosphere; electric fields and currents). Magnetospheric physics (magnetosphereionosphere interactions)


2004 ◽  
Vol 22 (2) ◽  
pp. 511-525 ◽  
Author(s):  
K. Oksavik ◽  
F. Søraas ◽  
J. Moen ◽  
R. Pfaff ◽  
J. A. Davies ◽  
...  

Abstract. In this paper we discuss counterstreaming electrons, electric field turbulence, HF radar spectral width enhancements, and field-aligned currents in the southward IMF cusp region. Electric field and particle observations from the FAST spacecraft are compared with CUTLASS Finland spectral width enhancements and ground-based optical data from Svalbard during a meridional crossing of the cusp. The observed 630nm rayed arc (Type-1 cusp aurora) is associated with stepped cusp ion signatures. Simultaneous counterstreaming low-energy electrons on open magnetic field lines lead us to propose that such electrons may be an important source for rayed red arcs through pitch angle scattering in collisions with the upper atmosphere. The observed particle precipitation and electric field turbulence are found to be nearly collocated with the equatorward edge of the optical cusp, in a region where CUTLASS Finland also observed enhanced spectral width. The electric field turbulence is observed to extend far poleward of the optical cusp. The broad-band electric field turbulence corresponds to spatial scale lengths down to 5m. Therefore, we suggest that electric field irregularities are directly responsible for the formation of HF radar backscatter targets and may also explain the observed wide spectra. FAST also encountered two narrow highly structured field-aligned current pairs flowing near the edges of cusp ion steps. Key words. Ionosphere (electric fields and currents). Magnetosphere physics (magnetopause, cusp, and boundary layers; auroral phenomena)


2006 ◽  
Vol 24 (2) ◽  
pp. 689-705 ◽  
Author(s):  
M. L. Parkinson

Abstract. Akasofu's solar wind ε parameter describes the coupling of solar wind energy to the magnetosphere and ionosphere. Analysis of fluctuations in ε using model independent scaling techniques including the peaks of probability density functions (PDFs) and generalised structure function (GSF) analysis show the fluctuations were self-affine (mono-fractal, single exponent scaling) over 9 octaves of time scale from ~46 s to ~9.1 h. However, the peak scaling exponent α0 was a function of the fluctuation bin size, so caution is required when comparing the exponents for different data sets sampled in different ways. The same generic scaling techniques revealed the organisation and functional form of concurrent fluctuations in azimuthal magnetospheric electric fields implied by SuperDARN HF radar measurements of line-of-sight Doppler velocity, vLOS, made in the high-latitude austral ionosphere. The PDFs of vLOS fluctuation were calculated for time scales between 1 min and 256 min, and were sorted into noon sector results obtained with the Halley radar, and midnight sector results obtained with the TIGER radar. The PDFs were further sorted according to the orientation of the interplanetary magnetic field, as well as ionospheric regions of high and low Doppler spectral width. High spectral widths tend to occur at higher latitude, mostly on open field lines but also on closed field lines just equatorward of the open-closed boundary, whereas low spectral widths are concentrated on closed field lines deeper inside the magnetosphere. The vLOS fluctuations were most self-affine (i.e. like the solar wind ε parameter) on the high spectral width field lines in the noon sector ionosphere (i.e. the greater cusp), but suggested multi-fractal behaviour on closed field lines in the midnight sector (i.e. the central plasma sheet). Long tails in the PDFs imply that "microbursts" in ionospheric convection occur far more frequently, especially on open field lines, than can be captured using the effective Nyquist frequency and volume resolution of SuperDARN radars.


2000 ◽  
Vol 18 (1) ◽  
pp. 99-110 ◽  
Author(s):  
J. A. Wild ◽  
T. K. Yeoman ◽  
P. Eglitis ◽  
H. J. Opgenoorth

Abstract. High time resolution data from the CUTLASS Finland radar during the interval 01:30-03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending ~5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes ~500 km and an eastward propagation velocity ~0.75 km s-1. They occur in the morning sector (~05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed..Key words. Ionosphere (auroral ionosphere; electric fields and currents) · Magnetospheric physics (magnetosphere-ionosphere interactions)


2001 ◽  
Vol 19 (4) ◽  
pp. 411-424 ◽  
Author(s):  
M. V. Uspensky ◽  
A. V. Koustov ◽  
P. Eglitis ◽  
A. Huuskonen ◽  
S. E. Milan ◽  
...  

Abstract. A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms–1 , while the other group had significantly larger velocities, of the order of 700 ms–1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms–1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms–1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm–1 ) and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere)


2007 ◽  
Vol 25 (1) ◽  
pp. 59-76 ◽  
Author(s):  
M. L. Parkinson ◽  
J. A. Wild ◽  
C. L. Waters ◽  
M. Lester ◽  
E. A. Lucek ◽  
...  

Abstract. An auroral westward flow channel (AWFC) is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC), the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER), a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES) which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER) instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM) provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2 downward FAC, located just poleward of the plasmapause. DMSP satellite observations confirmed the AWFC was located equatorward of the nightside plasmasheet, sometimes associated with ~10 keV ion precipitation.


2003 ◽  
Vol 21 (2) ◽  
pp. 493-508 ◽  
Author(s):  
M. Connors ◽  
G. Rostoker ◽  
G. Sofko ◽  
R. L. McPherron ◽  
M. G. Henderson

Abstract. Ps 6 disturbances and associated omega bands are often considered to be part of the phenomenology of the recovery phase of substorms. We note cases of the initiation of Ps 6 activity at or very near the time of onset, either of a substorm expansive phase, a pseudobreakup, or a poleward border intensification. Thus, we claim that Ps 6 disturbances need not be viewed primarily as phenomena of the recovery phase. This produces both the challenge of explaining Ps 6 within a broader context and the opportunity to use Ps 6 observations to better understand magnetospheric phenomenology, including expansive phase onsets. We further examine the position of the causative currents for Ps 6 and find that they may be located at either the equatorward or poleward border of the auroral oval, or within it. In the first case, the relationship of expansive phase onset and time delay to Ps 6 initiation appears to be very short. In the latter case, there is an association with poleward border intensification, but with a measurable time delay. We present HF radar data to discuss how the electric field at onset time favors the growth of Ps 6 current systems.Key words. Magnetospheric physics (Storms and substorms; Electric fields; MHD waves and instabilities)


Sign in / Sign up

Export Citation Format

Share Document