scholarly journals E-region decameter-scale plasma waves observed by the dual TIGER HF radars

2009 ◽  
Vol 27 (1) ◽  
pp. 261-278 ◽  
Author(s):  
B. A. Carter ◽  
R. A. Makarevich

Abstract. The dual Tasman International Geospace Environment Radar (TIGER) HF radars regularly observe E-region echoes at sub-auroral magnetic latitudes 58°–60° S including during geomagnetic storms. We present a statistical analysis of E-region backscatter observed in a period of ~2 years (late 2004–2006) by the TIGER Bruny Island and Unwin HF radars, with particular emphasis on storm-time backscatter. It is found that the HF echoes normally form a 300-km-wide band at ranges 225–540 km. In the evening sector during geomagnetic storms, however, the HF echoes form a curved band joining to the F-region band at ~700 km. The curved band lies close to the locations where the geometric aspect angle is zero, implying little to no refraction during geomagnetic storms, which is an opposite result to what has been reported in the past. The echo occurrence, Doppler velocity, and spectral width of the HF echoes are examined in order to determine whether new HF echo types are observed at sub-auroral latitudes, particularly during geomagnetic storms. The datasets of both TIGER radars are found to be dominated by low-velocity echoes. A separate population of storm-time echoes is also identified within the datasets of both radars with most of these echoes showing similar characteristics to the low-velocity echo population. The storm-time backscatter observed by the Bruny Island radar, on the other hand, includes near-range echoes (r<405 km) that exhibit some characteristics of what has been previously termed the High Aspect angle Irregularity Region (HAIR) echoes. We show that these echoes appear to be a storm-time phenomenon and further investigate this population by comparing their Doppler velocity with the simultaneously measured F- and E-region irregularity velocities. It is suggested that the HAIR-like echoes are observed only by HF radars with relatively poor geometric aspect angles when electron density is low and when the electric field is particularly high.

2004 ◽  
Vol 22 (4) ◽  
pp. 1177-1185 ◽  
Author(s):  
R. A. Makarevitch ◽  
F. Honary ◽  
A. V. Koustov

Abstract. Data collected by the CUTLASS Finland HF radar are used to illustrate the significant difference between the cosine component of the plasma convection in the F-region and the Doppler velocity of the E-region coherent echoes observed at large flow angles. We show that the E-region velocity is ~5 times smaller in magnitude and rotated by ~30° clockwise with respect to convection in the F-region. Also, measurements at flow angles larger than 90° exhibit a completely new feature: Doppler velocity increase with the expected aspect angle and spatial anticorrelation with the backscatter power. By considering DMSP drift-meter measurements we argue that the difference between F- and E-region velocities cannot be interpreted in terms of the convection change with latitude. The observed features in the velocity of the E-region echoes can be explained by taking into account the ion drift contribution to the irregularity phase velocity as predicted by the linear fluid theory. Key words. Ionosphere (auroral ionosphere; ionospheric irregularities; plasma convection)


2003 ◽  
Vol 21 (4) ◽  
pp. 893-913 ◽  
Author(s):  
M. L. Parkinson ◽  
M. Pinnock ◽  
H. Ye ◽  
M. R. Hairston ◽  
J. C. Devlin ◽  
...  

Abstract. A -190-nT negative bay in the geomagnetic X component measured at Macquarie Island ( -65° L) showed that an ionospheric substorm occurred during 09:58 to 11:10 UT on 27 February 2000. Signatures of an auroral westward flow channel (AWFC) were observed nearly simultaneously in the backscatter power, LOS Doppler velocity, and Doppler spectral width measured using the Tasman International Geospace Environment Radar (TIGER), a Southern Hemisphere HF SuperDARN radar. Many of the characteristics of the AWFC were similar to those occurring during a polarisation jet (PJ), or subauroral ion drift (SAID) event, and suggest that it may have been a pre-cursor to a fully developed, intense westward flow channel satisfying all of the criteria defining a PJ/SAID. A beam-swinging analysis showed that the westward drifts (poleward electric field) associated with the flow channel were very structured in time and space, but the smoothed velocities grew to ~ 800 ms-1 (47 mVm-1) during the 22-min substorm onset interval 09:56 to 10:18 UT. Maximum west-ward drifts of >1.3 km s-1 (>77 mVm-1) occurred during a ~ 5-min velocity spike, peaking at 10:40 UT during the expansion phase. The drifts decayed rapidly to ~ 300 ms-1 (18 mVm-1) during the 6-min recovery phase interval, 11:04 to 11:10 UT. Overall, the AWFC had a lifetime of 74 min, and was located near -65° L in the evening sector west of the Harang discontinuity. The large westward drifts were confined to a geographic zonal channel of longitudinal ex-tent >20° (>1.3 h magnetic local time), and latitudinal width ~2° L. Using a half-width of ~ 100 km in latitude, the peak electric potential was >7.7 kV. However, a transient velocity of >3.1 km s-1 with potential >18.4 kV was observed further poleward at the end of the recovery phase. Auroral oval boundaries determined using DMSP measurements suggest the main flow channel overlapped the equatorward boundary of the diffuse auroral oval. During the ~ 2-h interval following the flow channel, an ~ 3° L wide band of scatter was observed drifting slowly toward the west, with speeds gradually decaying to ~ 50 ms-1 (3 mVm -1). The scatter was observed extending past the Harang discontinuity, and had Doppler signatures characteristic of the main ionospheric trough, implicating the flow channel in the further depletion of F-region plasma. The character of this scatter was in contrast with the character of the scatter drifting toward the east at higher latitude.Key words. Ionosphere (auroral ionosphere; electric fields and currents; ionosphere-magnetospehere interactions) Magnetospheric physics (storms and substorms)


1997 ◽  
Vol 15 (1) ◽  
pp. 54-62 ◽  
Author(s):  
B. J. Jackel ◽  
D. R. Moorcroft ◽  
K. Schlegel

Abstract. The EISCAT UHF radar system was used to study the characteristics of E-region coherent backscatter at very large magnetic aspect angles (5–11°). Data taken using 60 μs pulses during elevation scans through horizontally uniform backscatter permitted the use of inversion techniques to determine height profiles of the scattering layer. The layer was always singly peaked, with a mean height of 104 km, and mean thickness (full width at half maximum) of 10 km, both independent of aspect angle. Aspect sensitivities were also estimated, with the Sodankylä-Tromsø link observing 5 dB/degree at aspect angles near 5°, decreasing to 3 dB/degree at 10° aspect angle. Observed coherent phase velocities from all three stations were found to be roughly consistent with LOS measurements of a common E-region phase velocity vector. The E-region phase velocity had the same orientation as the F-region ion drift velocity, but was approximately 50% smaller in magnitude. Spectra were narrow with skewness of about +1 (for negative velocities), increasing slightly with aspect angle.


1994 ◽  
Vol 12 (10/11) ◽  
pp. 1091-1100 ◽  
Author(s):  
K. Schlegel ◽  
H. Thiemann

Abstract. We model the modified two-stream plasma instability occurring in the ionospheric E-region using a 2.5-dimensional particle-in-cell code. Compared to previous similar work we concentrate on simulated quantities that can easily be measured in the real ionosphere by coherent radars or rockets, such as the Doppler velocity, the backscattered power, backscattered spectra, aspect angle behaviour and electron temperature enhancement. Despite using a relatively small simulation model, we obtain remarkably good agreement between actual observed and simulated plasma parameters. The advantage of such a small system is that we were able to perform (other than in previous related work) many simulation runs with different sets of input parameters, thus studying the unstable plasma under various conditions.


2004 ◽  
Vol 22 (5) ◽  
pp. 1649-1664
Author(s):  
R. A. Makarevitch ◽  
F. Honary ◽  
A. V. Koustov ◽  
M. V. Uspensky

Abstract. The meridional motions of the CUTLASS HF and STARE VHF coherent echoes, IMAGE equivalent electrojet currents, and IRIS absorption patches during the postnoon/early-evening event of 14 February 2000 are presented. The motions were found to be synchronous, to a first approximation, for all instruments. The temporal correlation between motions in the radar and magnetometer data was exceptionally good, although spatially the areas with the E-region backscatter and most intense equivalent currents were not coincident, with the HF (VHF) echoes being shifted 100–200km (20–50km) equatorward (poleward). The meridional motions of the radar echoes and electrojet currents appeared to be controlled by the IMF Bz changes; the meridional propagation direction was equatorward (poleward) during the intervals when the IMF was southward (northward), with one exception when the poleward progression continued after the IMF southward turning. We relate the observed meridional motion patterns to the polar cap expansion/contraction during variable IMF conditions and discuss the relative importance of two types of processes: the dayside reconnection and IMF-triggered substorms. We also investigate the irregularity Doppler velocity for the STARE (144MHz) and CUTLASS (12MHz) observations at large flow angles in the context of the eastward and westward electrojet systems. We show that the 144-MHz Doppler velocity is determined by a combination of two factors: the sense of electrojet currents and the aspect angle conditions within the STARE field of view. Finally, the behavior of small dayside enhancements of the IRIS absorption (up to 0.5dB at 38.2MHz) accompanying the radar echoes and electrojet currents is examined. Since the velocity of the meridional displacements was close to that of the poleward/equatorward progressing intense currents, it is suggested that the absorption patches observed during the event were related to the heating of the E-region plasma by the unstable plasma waves in the regions of enhanced electric fields. Key words. Ionosphere (auroral ionosphere; electric fields and currents; plasma convection)


2001 ◽  
Vol 19 (4) ◽  
pp. 411-424 ◽  
Author(s):  
M. V. Uspensky ◽  
A. V. Koustov ◽  
P. Eglitis ◽  
A. Huuskonen ◽  
S. E. Milan ◽  
...  

Abstract. A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms–1 , while the other group had significantly larger velocities, of the order of 700 ms–1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms–1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms–1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm–1 ) and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere)


2006 ◽  
Vol 24 (7) ◽  
pp. 1861-1869 ◽  
Author(s):  
A. K. Patra ◽  
S. Sripathi ◽  
P. B. Rao ◽  
R. K. Choudhary

Abstract. Observations of daytime E region echoes extending to altitudes as low as 87 km made using the Gadanki MST radar are presented. The echoing regions display descending layer resembling the characteristics of tidal winds and show structures with periods 2–4 min having both positive and negative slopes. At the center of the layer where strongest SNR is observed, the velocity is maximum and spectral width is minimum. At altitudes slightly above and below, where SNR is relatively low, velocity is low but spectral width is maximum. Daytime observations of echoes extending to such a low altitude and associated structures akin to nighttime quasi-periodic echoes throughout the observational period are the most significant results, not reported earlier from Gadanki and other locations. Other notable results are large SNR (as high as 15 dB) and spectral width (as high as 70 m/s) at the bottommost altitudes, where collisional damping of the plasma waves is significant


2002 ◽  
Vol 20 (1) ◽  
pp. 13-28 ◽  
Author(s):  
G. Chisham ◽  
M. Pinnock

Abstract. Global convection mapping using line-of-sight Doppler velocity data from the Super Dual Auroral Radar Network (SuperDARN) is now an accepted method of imaging high-latitude ionospheric convection. This mapping process requires that the flow measured by the radars is defined solely by the convection electric field. This is generally only true of radar backscatter from the ionospheric F-region. We investigate the extent to which the E-region and ground backscatter in the SuperDARN data set may be misidentified as F-region backscatter, and assess the contamination of global convection maps which results from the addition of this non-F-region backscatter. We present examples which highlight the importance of identifying this contamination, especially with regard to the mesoscale structure in the convection maps.Key words. Ionosphere (plasma convection) – Radio science (radio wave propagation; instruments and techniques)


2002 ◽  
Vol 20 (8) ◽  
pp. 1203-1212 ◽  
Author(s):  
J. L. Chau ◽  
R. F. Woodman ◽  
L. A. Flores

Abstract. We present a summary of the statistical characteristics of echoes from ionospheric (E- and F-region) field-aligned irregularities obtained with the Piura VHF radar. This radar is located at ~ 7.0° dip latitude, just outside the equatorial electrojet (EEJ) region. Our results are based on (1) intermittent observations made between 1991 and 1999 just few days a year, and (2) continuous observations made between January 2000 and June 2001. During most of the intermittent observations, simultaneous measurements of EEJ and equatorial spread F (ESF) irregularities were performed with the Jicamarca VHF radar. From the continuous measurements, we have obtained the diurnal and seasonal characteristics of a variety of parameters (percentage of occurrence, signal-to-noise ratio and/or Doppler velocities) from the lower and upper E-region irregularities and also from F-region irregularities over Piura. For example, we have found that (1) the E-region echoes are stronger and occur more frequently during local summer (i.e. between December and March); (2) between May and June, the E-region echoes are weaker and occur less frequently; moreover, during these months, a semidiurnal wave with large amplitudes is observed in the meridional wind (> 100 ms- 1); (3) there is vertical wavelength of about 20 km in the Doppler velocity, particularly after midnight; (4) the lower (upper) E-region Doppler velocities are influenced mainly by meridional winds (equatorial F-region vertical drifts). In addition, we have observed that the seasonal and daily occurrences of Piura F-region irregularities are similar to the occurrence of topside ESF irregularities over Jicamarca. The likelihood of occurrence of F-region irregularities over Piura and, therefore, topside ESF over Jicamarca is greater when there are no E-region irregularities over Piura. On the other hand, there is more probability of observing bottomtype/bottomside ESF irregularities over Jicamarca when E-region irregularities are observed over Piura.Key words. Ionosphere (ionospheric irregularities; equatorial ionosphere; instruments and techniques)


2009 ◽  
Vol 27 (8) ◽  
pp. 3065-3075 ◽  
Author(s):  
R. A. Makarevich ◽  
B. A. Carter

Abstract. The high-spatial-resolution observations of the auroral E-region echoes by the Super Dual Auroral Radar Network (SuperDARN) HF radar at Pykkvibaer, Iceland considered in a previous study are re-examined. Both the spectral power and Doppler velocity of the E-region HF echoes exhibit strong dependence on the slant range and expected off-perpendicular magnetic aspect angle (aspect angle attenuation). We consider the aspect angle attenuation effects in identification of spectral HF echo types. It is argued that echoes with Doppler velocities close to the nominal value of the ion-acoustic speed Cs (~350 m/s) and echoes with velocities greatly exceeding the Cs (up to 600 m/s) are more related in their generation mechanisms than previously thought. It is proposed to treat the echoes near the Cs as aspect-angle-attenuated counterparts of the high-velocity echoes and that both types are generated directly by the modified two-stream instability with aspect angle attenuation resulting in the preferential phase velocity saturation at the Cs.


Sign in / Sign up

Export Citation Format

Share Document