scholarly journals Modeling study of mesospheric planetary waves: genesis and characteristics

2004 ◽  
Vol 22 (6) ◽  
pp. 1885-1902 ◽  
Author(s):  
H. G. Mayr ◽  
J. G. Mengel ◽  
E. R. Talaat ◽  
H. S. Porter ◽  
K. L. Chan

Abstract. The Numerical Spectral Model (NSM) extends from the ground into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs). In the present version of the model we account for a tropospheric heat source in the zonal mean (m=0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. In the study presented here, we discuss the planetary waves (PWs) that are solely generated internally, i.e. without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs are generally weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby type PWs, which slowly propagate westward relative to the mean zonal flow, are carried by the winds so that they appear (from the ground) to propagate, respectively, eastward and westward in the winter and summer hemispheres below 80km. Depending on the zonal wave number and magnitudes of the zonal winds, and under the influence of the equatorial oscillations, these PWs typically have periods between 2 and 20 days. Their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby-gravity waves, which propagate westward at low latitudes and have periods around 2 days for zonal wave numbers m=2 to 4. (3) Eastward propagating equatorial Kelvin waves, which are generated in the upper mesosphere with periods between 1 and 3 days depending on m. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80km in the winter hemisphere; but above that altitude the amplitudes are larger in the summer hemisphere where the winds can approach 50m/s. This pattern in the seasonal variations also appears in the baroclinity of the zonal mean (m=0). The nonmigrating tides in the mesosphere are significantly larger for the model with the tropospheric heat source, in which PWs are apparently generated by the instabilities that arise around the tropopause.

2009 ◽  
Vol 27 (6) ◽  
pp. 2361-2369 ◽  
Author(s):  
F. Vargas ◽  
D. Gobbi ◽  
H. Takahashi ◽  
L. M. Lima

Abstract. We show in this report the momentum flux content input in the mesosphere due to relatively fast and small scale gravity waves (GWs) observed through OH airglow images. The acquisition of OH NIR images was carried out in Brazil at Brasilia (14.8° S, 47.6° W) and Cariri (7.4° S, 36.5° W) from September 2005 to November 2005 during the SpreadFEx Campaign. Horizontal wind information from meteor radar was available in Cariri only. Our findings showed strong wave activity in both sites, mainly in Cariri. High wave directionality was also observed in both sites during SpreadFEx, which have been observed by other investigators using different analysis' techniques and different types of data during the campaign. We discuss also the possibility of plasma bubble seeding by gravity waves presenting spatial and temporal scales estimated with our novel analysis technique during the SpreadFEx campaign.


2015 ◽  
Vol 72 (3) ◽  
pp. 1137-1151 ◽  
Author(s):  
Paul D. Williams ◽  
Christopher W. Kelsall

Abstract Multiple alternating zonal jets are a ubiquitous feature of planetary atmospheres and oceans. However, most studies to date have focused on the special case of barotropic jets. Here, the dynamics of freely evolving baroclinic jets are investigated using a two-layer quasigeostrophic annulus model with sloping topography. In a suite of 15 numerical simulations, the baroclinic Rossby radius and baroclinic Rhines scale are sampled by varying the stratification and root-mean-square eddy velocity, respectively. Small-scale eddies in the initial state evolve through geostrophic turbulence and accelerate zonally as they grow in horizontal scale, first isotropically and then anisotropically. This process leads ultimately to the formation of jets, which take about 2500 rotation periods to equilibrate. The kinetic energy spectrum of the equilibrated baroclinic zonal flow steepens from a −3 power law at small scales to a −5 power law near the jet scale. The conditions most favorable for producing multiple alternating baroclinic jets are large baroclinic Rossby radius (i.e., strong stratification) and small baroclinic Rhines scale (i.e., weak root-mean-square eddy velocity). The baroclinic jet width is diagnosed objectively and found to be 2.2–2.8 times larger than the baroclinic Rhines scale, with a best estimate of 2.5 times larger. This finding suggests that Rossby wave motions must be moving at speeds of approximately 6 times the turbulent eddy velocity in order to be capable of arresting the isotropic inverse energy cascade.


2011 ◽  
Vol 4 (8) ◽  
pp. 1627-1636 ◽  
Author(s):  
T. Tsuda ◽  
X. Lin ◽  
H. Hayashi ◽  

Abstract. GPS radio occultation (RO) is characterized by high accuracy and excellent height resolution, which has great advantages in analyzing atmospheric structures including small-scale vertical fluctuations. The vertical resolution of the geometrical optics (GO) method in the stratosphere is about 1.5 km due to Fresnel radius limitations, but full spectrum inversion (FSI) can provide superior resolutions. We applied FSI to COSMIC GPS-RO profiles from ground level up to 30 km altitude, although basic retrieval at UCAR/CDAAC sets the sewing height from GO to FSI below the tropopause. We validated FSI temperature profiles with routine high-resolution radiosonde data in Malaysia and North America collected within 400 km and about 30 min of the GPS RO events. The average discrepancy at 10–30 km altitude was less than 0.5 K, and the bias was equivalent with the GO results. Using the FSI results, we analyzed the vertical wave number spectrum of normalized temperature fluctuations in the stratosphere at 20–30 km altitude, which exhibits good consistency with the model spectra of saturated gravity waves. We investigated the white noise floor that tends to appear at high wave numbers, and the substantial vertical resolution of the FSI method was estimated as about 100–200 m in the lower stratosphere. We also examined a criterion for the upper limit of the FSI profiles, beyond which bending angle perturbations due to system noises, etc., could exceed atmospheric excess phase fluctuations. We found that the FSI profiles can be used up to about 28 km in studies of temperature fluctuations with vertical wave lengths as short as 0.5 km.


2011 ◽  
Vol 4 (2) ◽  
pp. 2071-2097
Author(s):  
T. Tsuda ◽  
X. Lin ◽  
H. Hayashi ◽  

Abstract. GPS radio occultation (RO) is characterized by high accuracy and excellent height resolution, which has great advantages in analyzing atmospheric structures including small-scale vertical fluctuations. The vertical resolution of the geometrical optics (GO) method in the stratosphere is about 1.5 km due to Fresnel radius limitations, but full spectrum inversion (FSI) can provide superior resolutions. We applied FSI to COSMIC GPS-RO profiles from ground level up to 30 km altitude, although basic retrieval at UCAR/CDAAC sets the sewing height from GO to FSI below the tropopause. We validated FSI temperature profiles with routine high-resolution radiosonde data in Malaysia and North America collected within 400 km and about 30 min of the GPS RO events. The average discrepancy at 10–30 km altitude was less than 0.5 K, and the bias was equivalent with the GO results. Using the FSI results, we analyzed the vertical wave number spectrum of normalized temperature fluctuations in the stratosphere at 20–30 km altitude, which exhibits good consistency with the model spectra of saturated gravity waves. We investigated the white noise floor that tends to appear at high wave numbers, and the substantial vertical resolution of the FSI method was estimated as about 100–200 m in the lower stratosphere. We also examined a criterion for the upper limit of the FSI profiles, beyond which bending angle perturbations due to system noises, etc, could exceed atmospheric excess phase fluctuations. We found that the FSI profiles can be used up to about 28 km in studies of temperature fluctuations with vertical wave lengths as short as 0.5 km.


2015 ◽  
Vol 782 ◽  
pp. 144-177 ◽  
Author(s):  
Anthony Randriamampianina ◽  
Emilia Crespo del Arco

Direct numerical simulations based on high-resolution pseudospectral methods are carried out for detailed investigation into the instabilities arising in a differentially heated, rotating annulus, the baroclinic cavity. Following previous works using air (Randriamampianina et al., J. Fluid Mech., vol. 561, 2006, pp. 359–389), a liquid defined by Prandtl number $Pr=16$ is considered in order to better understand, via the Prandtl number, the effects of fluid properties on the onset of gravity waves. The computations are particularly aimed at identifying and characterizing the spontaneously emitted small-scale fluctuations occurring simultaneously with the baroclinic waves. These features have been observed as soon as the baroclinic instability sets in. A three-term decomposition is introduced to isolate the fluctuation field from the large-scale baroclinic waves and the time-averaged mean flow. Even though these fluctuations are found to propagate as packets, they remain attached to the background baroclinic waves, locally triggering spatio-temporal chaos, a behaviour not observed with the air-filled cavity. The properties of these features are analysed and discussed in the context of linear theory. Based on the Richardson number criterion, the characteristics of the generation mechanism are consistent with a localized instability of the shear zonal flow, invoking resonant over-reflection.


Using the B-plane approximation we formulate the equations which govern small perturbations in a rotating atmosphere and describe a wide class of possible wave motions, in the presence of a background zonal flow, ranging from ‘moderately high’ frequency acoustic-gravity-inertial waves to ‘low’ frequency planetary-scale (Rossby) waves. The discussion concentrates mainly on the propagation properties of Rossby waves in various types of latitudinally sheared zonal flows which occur at different heights and seasons in the earth’s atmosphere. However, it is first shown that gravity waves in a latitudinally sheared zonal flow exhibit critical latitude behaviour where the ‘intrinsic ’ wave frequency matches the Brunt-Vaisala frequency (in contrast to the case of gravity waves in a vertically sheared flow where a critical layer exists where the horizontal wave phase speed equals the flow speed) and that the wave behaviour near such a latitude is similar to that of Rossby waves in the vicinity of their critical latitudes which occur where the ‘intrinsic’ wave frequency approaches zero. In the absence of zonal flow in the atmosphere the geometry of the planetary wave dispersion equation (which is described by a highly elongated ellipsoid in wave-number vector space) implies that energy propagates almost parallel to the /--planes. This feature may provide a reason why there seems to be so little coupling between planetary scale motions in the lower and upper atmosphere. Planetary waves can be made to propagate eastward, as well as westward, if they are evanescent in the vertical direction. The W.K.B. approximation, which provides an approximate description of wave propagation in slowly varying zonal wind shears, shows that the distortion of the wave-number surface caused by the zonal flow controls the dependence of the wave amplitude on the zonal flow speed. In particular it follows that Rossby waves propagating into regions of strengthening westerlies are intensified in amplitude whereas those waves propagating into strengthening easterlies are diminished in amplitude. A classification of the various types of ray trajectories that arise in zonal flow profiles occurring in the Earth’s atmosphere, such as jet-like variations of westerly or easterly zonal flow or a belt of westerlies bounded by a belt of easterlies, is given, and provides the conditions giving rise to such phenomena as critical latitude behaviour and wave trapping. In a westerly flow there is a tendency for the combined effects on wave propagation of jet-like variations of B and zonal flow speed to counteract each other, whereas in an easterly flow such variations tend to reinforce each other. An examination of the reflexion and refraction of Rossby waves at a sharp jump in the zonal flow speed shows that under certain conditions wave amplification, or over-reflexion, can arise with the implication that the reflected wave can extract energy from the background streaming motion. On the other hand the wave behaviour near critical latitudes, which can be described in terms of a discontinuous jump in the ‘wave invariant’, shows that such latitudes can act as either wave absorbers (in which case the mean flow is accelerated there) or wave emitters (in which case the mean flow is decelerated there).


2021 ◽  
Author(s):  
Harikrishnan Charuvil Asokan ◽  
Jorge L Chau ◽  
Raffaele Marino ◽  
Juha Vierinen ◽  
Fabio Vargas ◽  
...  

Abstract In recent years, multistatic specular meteor radars (SMRs) have been introduced to study the Mesosphere and Lower Thermosphere (MLT) dynamics with increasing spatial and temporal resolution. In this paper, frequency spectra of MLT horizontal winds are explored through observations from a campaign using the SIMONe (Spread-spectrum Interferometric Multistatic meteor radar Observing Network) approach conducted in northern Germany in 2018 (hereafter SIMONe 2018). The seven-day SIMONe 2018 comprised of fourteen multistatic SMR links and allows to build a substantial database of specular meteor trail events, collecting more than one hundred thousand detections per day within a geographic area of $\sim $ 500 km $\times$ 500 km. We have implemented two methods to obtain the frequency spectra of the horizontal wind components: (1) Mean Wind Estimation (MWE) and (2) Wind field Correlation Function Inversion (WCFI), which utilizes the mean and the covariances of the line of sight velocities, respectively. Monte Carlo simulations of a gravity wave spectral model were implemented to validate and compare both methods. The simulation analyses suggest that the WCFI helps to capture the energy of smaller-scale wind fluctuations than those capture with MWE. Characterization of the spectral slope of the horizontal wind at different MLT altitudes has been conducted on the SIMONe 2018, and it provides evidence that gravity waves with periods smaller than seven hours and greater than two hours dominate with horizontal structures significantly larger than 500 km. These waves might be associated with secondary gravity waves during this observational campaign. In the future, these analyses can be extended to understand the significance of small-scale fluctuations in the MLT, which were not possible with conventional MWE methods.


2020 ◽  
Vol 20 (12) ◽  
pp. 7617-7644
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

Abstract. Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW) event. Four-dimensional (4D; x–z and t) and two-dimensional (2D; z and t) results are compared for various parameterized pseudomomentum fluxes. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward pseudomomentum fluxes are enhanced in the upper troposphere and northern stratosphere due to refraction and curvature effects around fluctuating jet flows. In the northern polar upper mesosphere and lower thermosphere, eastward pseudomomentum fluxes are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wave numbers due to refraction and curvature effects can make it more possible that GWs elude critical level filtering and saturation in the lower atmosphere. GW focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Enhancement of the structure of zonal wave number 2 in pseudomomentum fluxes in the middle stratosphere begins from the early stage of the SSW evolution. An increase in pseudomomentum fluxes in the upper atmosphere is present even after the onset in the 4D. Significantly enhanced pseudomomentum fluxes, when the polar vortex is disturbed, are related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structures without substantially changing local mean flows.


Author(s):  
Hamid A. Pahlavan ◽  
John M. Wallace ◽  
Qiang Fu ◽  
George N. Kiladis

AbstractThis paper describes stratospheric waves in ERA5 reanalysis and evaluates the contributions of different types of waves to the driving of the quasi-biennial oscillation (QBO). Because of its higher spatial resolution compared to its predecessors, ERA5 is capable of resolving a broader spectrum of waves. It is shown that the resolved waves contribute to both eastward and westward accelerations near the equator, mainly by the way of the vertical flux of zonal momentum. The eastward accelerations by the resolved waves are mainly due to Kelvin waves and small-scale gravity (SSG) waves with zonal wavelengths smaller than 2000 km, whereas the westward accelerations are forced mainly by SSG waves, with smaller contributions from inertio-gravity and mixed-Rossby-gravity waves. Extratropical Rossby waves disperse upward and equatorward into the tropical region and impart a westward acceleration to the zonal flow. They appear to be responsible for at least some of the irregularities in the QBO cycle.


2019 ◽  
Vol 15 ◽  
pp. 6121-6137
Author(s):  
Gangamani Hv

This paper focuses on the study of acoustic propagation of internal gravity waves which generates small scale variations through propagation and hence can obtain transmission co-efficients using N2 buoyancy frequency variation of a compressible stratified fluid for a small regions. We have also analysed the results using the asymptotic expansions for large compressible limits. The reduction of the transmission in the N2-barrier region for the density layers sandwiched along with acoustic waves is obtained through graphs for different density barrier regions. The dispersion characteristics shows the contours of the transmission in the wave number plane. The curves for ! < N0 are hyperbolic, representing internal gravity waves as these become the dispersionwaves for an incompressible fluid and the curve with ! > N0 are ellipsoids which represent the acoustic gravity or infrasonic waves for the cut off frequency


Sign in / Sign up

Export Citation Format

Share Document