scholarly journals Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations

2004 ◽  
Vol 22 (1) ◽  
pp. 63-72 ◽  
Author(s):  
S. V. Apatenkov ◽  
V. A. Sergeev ◽  
R. Pirjola ◽  
A. Viljanen

Abstract. To learn about the geometry and sources of the ionospheric current systems which generate strong geomagnetically induced currents, we categorize differential equivalent current systems (DEC) for events with strong dB/dt by decomposing them into the contributions of electrojet-type and vortex-type elementary systems. By solving the inverse problem we obtain amplitudes and locations of these elementary current systems. One-minute differences of the geomagnetic field values at the IMAGE magnetometer network in 1996–2000 are analysed to study the spatial distributions of large dB/dt events. The relative contributions of the two components are evaluated. In particular, we found that the majority of the strongest dB/dt events (100–1000nT/min) appear to be produced by the vortex-type current structures and most of them occur in the morning LT hours, probably caused by the Ps6 pulsation events associated with auroral omega structures. For strong dB/dt events the solar wind parameters are shifted toward strong (tens nT) southward IMF, enhanced velocity and dynamic pressure, in order for the main phase of the magnetic storms to occur. Although these events appear mostly during magnetic storms when the auroral oval greatly expands, the area of large dB/dt stays in the middle part of the auroral zone; therefore, it is connected to the processes taking part in the middle of the magnetosphere rather than in its innermost region populated by the ring current. Key words. Geomagnetism and paleomagnetism (rapid time variations) – Ionosphere (auroral ionosphere; ionospheric disturbances)

2003 ◽  
Vol 21 (3) ◽  
pp. 709-717 ◽  
Author(s):  
A. Pulkkinen ◽  
A. Thomson ◽  
E. Clarke ◽  
A. McKay

Abstract. Geomagnetically induced currents (GIC) flowing in technological systems on the ground are a direct manifestation of space weather. Due to the proximity of very dynamic ionospheric current systems, GIC are of special interest at high latitudes, where they have been known to cause problems, for example, for normal operation of power transmission systems and buried pipelines. The basic physics underlying GIC, i.e. the magnetosphere – ionosphere interaction and electromagnetic induction in the ground, is already quite well known. However, no detailed study of the drivers of GIC has been carried out and little is known about the relative importance of different types of ionospheric current systems in terms of large GIC. In this study, the geomagnetic storm of 6–7 April 2000 is investigated. During this event, large GIC were measured in technological systems, both in Finland and in Great Britain. Therefore, this provides a basis for a detailed GIC study over a relatively large regional scale. By using GIC data and corresponding geomagnetic data from north European magnetometer networks, the ionospheric drivers of large GIC during the event were identified and analysed. Although most of the peak GIC during the storm were clearly related to substorm intensifications, there were no common characteristics discernible in substorm behaviour that could be associated with all the GIC peaks. For example, both very localized ionospheric currents structures, as well as relatively large-scale propagating structures were observed during the peaks in GIC. Only during the storm sudden commencement at the beginning of the event were large-scale GIC evident across northern Europe with coherent behaviour. The typical duration of peaks in GIC was also quite short, varying between 2–15 min.Key words. Geomagnetism and paleo-magnetism (geomagnetic induction) – Ionosphere (ionospheric disturbances) – Magnetospheric physics (storms and substorms)


2000 ◽  
Vol 18 (9) ◽  
pp. 1067-1072 ◽  
Author(s):  
H. Liu ◽  
K. Schlegel ◽  
S.-Y. Ma

Abstract. The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.Key words: Ionosphere (auroral ionosphere; polar ionosphere) - Magnetospheric physics (storms and substorms)


2016 ◽  
Vol 34 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Larisa Trichtchenko

Abstract. Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.


2021 ◽  
Vol 44 ◽  
pp. 20-23
Author(s):  
I.V. Despirak ◽  
◽  
P.V. Setsko ◽  
Ya.A. Sakharov ◽  
V.N. Selivanov ◽  
...  

Geomagnetically induced currents (GICs), arising both on power lines and on pipelines, may have strong negative impact on the technological networks up to accidents ("blackouts"). Magnetospheric disturbances are one of the factors in the appearance of GICs, however there is no unambiguous relationship between substorm and presence of currents. In this paper, we consider two intense cases of GIC (15March 2012 and 17 March 2013), registered on two different technological networks: 1) on the "Nothern Transit" power line (Vykhodnoy, Revda and Kondopoga stations) located in the auroral zone, 2) on the Finnish natural gas pipeline near Mäntsälä located in the subauroral zone. Both GIC cases are compared with substorm development in the auroral zone, using data from IMAGE magnetometers network and MAIN camera system in Apatity. We found a good correlation between the GIC appearance and variations of geomagnetic indexes: IL – index, which characterized of westward electrojet intensity on the IMAGE meridian and Wp - index, which describes the wave activity of the substorm. Besides, it was shown also a good correlation between GICs and the thin spatio-temporal structure of the substorm development (the appearance and the propagation to the pole of substorm activations), which is appeared both in the magnetic data and in the all sky camera images.


2011 ◽  
Vol 29 (4) ◽  
pp. 673-678 ◽  
Author(s):  
S. Tomita ◽  
M. Nosé ◽  
T. Iyemori ◽  
H. Toh ◽  
M. Takeda ◽  
...  

Abstract. The Auroral Electrojet (AE) indices, which are composed of four indices (AU, AL, AE, and AO), are calculated from the geomagnetic field data obtained at 12 geomagnetic observatories that are located in geomagnetic latitude (GMLAT) of 61.7°–70°. The indices have been widely used to study magnetic activity in the auroral zone. In the present study, we examine magnetic local time (MLT) dependence of geomagnetic field variations contributing to the AU and AL indices. We use 1-min geomagnetic field data obtained in 2003. It is found that both AU and AL indices have two ranges of MLT (AU: 15:00–22:00 MLT, ~06:00 MLT; and AL: ~02:00 MLT, 09:00–12:00 MLT) contributing to the index during quiet periods and one MLT range (AU: 15:00–20:00 MLT, and AL: 00:00–06:00 MLT) during disturbed periods. These results are interpreted in terms of various ionospheric current systems, such as, Sqp, Sq, and DP2.


Sign in / Sign up

Export Citation Format

Share Document