scholarly journals SEEK-2 (Sporadic-<i>E</i> Experiment over Kyushu 2) − Project Outline, and Significance

2005 ◽  
Vol 23 (7) ◽  
pp. 2295-2305 ◽  
Author(s):  
M. Yamamoto ◽  
S. Fukao ◽  
R. T. Tsunoda ◽  
R. Pfaff ◽  
H. Hayakawa

Abstract. SEEK-2 (Sporadic-E Experiment over Kyushu 2) is an observation campaign to study the spatial structure of the field-aligned irregularity (FAI) and sporadic-E(Es)-layer by means of two sounding rockets and a ground-based observation network with radars and optical instruments. The experiment was successfully conducted on 3 August 2002, with successive launches of two sounding rockets from the Uchinoura Space Center (USC) of the Japan Aerospace Exploration Agency (JAXA). The timing of the experiment was carefully selected, while intense quasi-periodic (QP) echoes were observed with two radars in Tanegashima. The main Es-layer, with its double-layered structure, was observed at altitudes of 103–105 km, the presence of which was well accounted for by the ion accumulation due to neutral-wind shear. Several minor peaks were detected in the electron density profiles at altitudes of up to 130 km. The intensity of the electric field was 5–10 mV/m and showed intense fluctuations below 110 km. Wave-like variation of the electric field was seen above 110 km. From radar experiments, we found that QP echoes appeared around 105 km, which agreed well with the main Es-layer height. The QP echoes propagated to the west-northwest, with frontal structures elongated from north-northeast to south-southwest. Radar observations conduced throughout the SEEK-2 period, on the other hand, showed that frontal structures of the QP echoes were most frequently propagated to the southeast. This result was consistent with the direction of gravity-wave propagation observed with the OH imager during the same period. The rocket beacon experiment with the Es-layers revealed the spatial structure of the plasma densities. On the basis of these results and those from SEEK-1 in 1996, we examined the structures of the nighttime mid-latitude E-region. We concluded that the QP echoes reflect the horizontal structures of the main Es-layers. The source of the structures was not clearly determined from the experiments, but the candidates are gravity waves and the Kelvin-Helmholtz instability. The azimuth-dependent Es-instability may have contributed to enhance structures of the QP echoes, although this instability may not be a major source of the QP structure in SEEK-2. Polarization electric fields were induced from the Es-layer with QP echoes, mapped upward along the geomagnetic field, and played an important role in determining the structures of the whole ionospheric E-region. Keywords. Mid-latitude ionosphere – Ionospheric irregularities – Ionosphere-atmosphere interactions

2005 ◽  
Vol 23 (7) ◽  
pp. 2377-2384 ◽  
Author(s):  
T. Yokoyama ◽  
M. Yamamoto ◽  
S. Fukao ◽  
T. Takahashi ◽  
M. Tanaka

Abstract. Observational campaigns of the mid-latitude ionospheric E-region with sounding rockets and ground-based instruments were conducted in 1996 (SEEK) and 2002 (SEEK-2). Both of them were successfully conducted to bring important findings about the mid-latitude E-region and quasi-periodic (QP) VHF radar echoes. The observational results in the SEEK and the SEEK-2 are compared with numerical simulations and discussed in this paper. While sporadic-E (Es)-layers are actually formed by the observed neutral wind, it is difficult for the constant wind shear to produce the sharp Es-layer gradient. However, once they are formed in the lower E-region, they cannot easily be dissipated by the simple diffusive motion. The polarization electric field, calculated under the condition at the rocket launch time, shows similar amplitude and structure to the measurement around the Es-layer altitude. The structure of the plasma density and the electric field above the Es-layer observed in the SEEK-2 showed a wave-like pattern up to an altitude of 150 km. Considering a mapping of the polarization electric field generated within the Es-layers, gravity waves are the possible source of the wave-like structure of the measured electric fields and sub-peaks of the electron density above the main Es-layers. Fluctuation of the measured magnetic field is reproduced by Hall or field-aligned current driven by the polarization electric field. The current theoretical models for QP echoes and the polarization electric field are basically verified by the discussion in this paper. Keywords. Ionospheric irregularities – Mid-latitude ionosphere – Numerical simulation studies


2008 ◽  
Vol 26 (9) ◽  
pp. 2929-2936 ◽  
Author(s):  
K.-I. Oyama ◽  
K. Hibino ◽  
T. Abe ◽  
R. Pfaff ◽  
T. Yokoyama ◽  
...  

Abstract. The electron temperature (Te), electron density (Ne), and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (Es) at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from Ne and Te shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of Es, that was drawn by using Te, Ne, and the electric field data, corresponded to the computer simulation; the main structure of Es is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of Te, Ne and electric field in higher altitude.


2004 ◽  
Vol 22 (3) ◽  
pp. 901-910 ◽  
Author(s):  
T. Bösinger ◽  
G. C. Hussey ◽  
C. Haldoupis ◽  
K. Schlegel

Abstract. A model developed several years ago by Huuskonen et al. (1984) predicted that vertical transport of ions in the nocturnal auroral E-region ionosphere can shift the electron density profiles in altitude during times of sufficiently large electric fields. If the vertical plasma transport effect was to operate over a sufficiently long enough time, then the real height of the E-region electron maximum should be shifted some km upwards (downwards) in the eastward (westward) auroral electrojet, respectively, when the electric field is strong, exceeding, say, 50 mV/m. Motivated by these predictions and the lack of any experimental verification so far, we made use of the large database of the European Incoherent Scatter (EISCAT) radar to investigate if the anticipated vertical plasma transport is at work in the auroral E-region ionosphere and thus to test the Huuskonen et al. (1984) model. For this purpose a new type of EISCAT data display was developed which enabled us to order a large number of electron density height profiles, collected over 16 years of EISCAT operation, according to the electric field magnitude and direction as measured at the same time at the radar's magnetic field line in the F-region. Our analysis shows some signatures in tune with a vertical plasma transport in the auroral E-region of the type predicted by the Huuskonen et al. model. The evidence brought forward is, however, not unambiguous and requires more rigorous analysis. Key words. Ionosphere (auroral ionosphere; plasma convection; electric fields and currents)


1998 ◽  
Vol 16 (10) ◽  
pp. 1343-1354 ◽  
Author(s):  
B. S. Lanchester ◽  
M. H. Rees ◽  
K. J. F. Sedgemore ◽  
J. R. Palmer ◽  
H. U. Frey ◽  
...  

Abstract. High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.Key words. Auroral ionosphere · Ionosphere-magnetosphere interactions · EISCAT


1997 ◽  
Vol 15 (10) ◽  
pp. 1309-1315 ◽  
Author(s):  
R. G. Rastogi

Abstract. A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.


2005 ◽  
Vol 23 (7) ◽  
pp. 2319-2334 ◽  
Author(s):  
R. Pfaff ◽  
H. Freudenreich ◽  
T. Yokoyama ◽  
M. Yamamoto ◽  
S. Fukao ◽  
...  

Abstract. Electric field and plasma density data gathered on a sounding rocket launched from Uchinoura Space Center, Japan, reveal a complex electrodynamics associated with sporadic-E layers and simultaneous observations of quasi-periodic radar echoes. The electrodynamics are characterized by spatial and temporal variations that differed considerably between the rocket's upleg and downleg traversals of the lower ionosphere. Within the main sporadic-E layer (95–110 km) on the upleg, the electric fields were variable, with amplitudes of 2–4 mV/m that changed considerably within altitude intervals of 1–3 km. The identification of polarization electric fields coinciding with plasma density enhancements and/or depletions is not readily apparent. Within this region on the downleg, however, the direction of the electric field revealed a marked change that coincided precisely with the peak of a single, narrow sporadic-E plasma density layer near 102.5 km. This shear was presumably associated with the neutral wind shear responsible for the layer formation. The electric field data above the sporadic-E layer on the upleg, from 110 km to the rocket apogee of 152 km, revealed a continuous train of distinct, large scale, quasi-periodic structures with wavelengths of 10–15 km and wavevectors oriented between the NE-SW quadrants. The electric field structures had typical amplitudes of 3–5 mV/m with one excursion to 9 mV/m, and in a very general sense, were associated with perturbations in the plasma density. The electric field waveforms showed evidence for steepening and/or convergence effects and presumably had mapped upwards along the magnetic field from the sporadic-E region below. Candidate mechanisms to explain the origin of these structures include the Kelvin-Helmholtz instability and the Es-layer instability. In both cases, the same shear that formed the sporadic-E layer would provide the energy to generate the km-scale structures. Other possibilities include gravity waves or a combination of these processes. The data suggest that these structures were associated with the lower altitude density striations that were the seat of the QP radar echoes observed simultaneously. They also appear to have been associated with the mechanism responsible for a well-defined pattern of "whorls" in the neutral wind data that were revealed in a chemical trail released by a second sounding rocket launched 15min later. Short scale (<100 m) electric field irregularities were also observed and were strongest in the sporadic-E region below 110km. The irregularities were organized into 2–3 layers on the upleg, where the plasma density also displayed multiple layers, yet were confined to a single layer on the downleg where the plasma density showed a single, well-defined sporadic-E peak. The linear gradient drift instability involving the DC electric field and the vertical plasma gradient is shown to be incapable of driving the observed waves on the upleg, but may have contributed to the growth of short scale waves on the topside of the narrow unstable density gradient observed on the downleg. The data suggest that other sources of free energy may have been important factors for the growth of the short scale irregularities. Keywords. Ionosphere (Mid-latitude ionosphere; Electric fields and currents; Ionospheric irregularities)


2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

1995 ◽  
Vol 13 (8) ◽  
pp. 871-878 ◽  
Author(s):  
S. S. Hari ◽  
B. V. Krishna Murthy

Abstract. Night-time F-region vertical electrodynamic drifts at the magnetic equatorial station, Trivandrum are obtained for a period of 2 years, 1989 and 1990 (corresponding to solar cycle maximum epoch), using ionosonde h'F data. The seasonal variation of the vertical drift is found to be associated with the longitudinal gradients of the thermospheric zonal wind. Further, the seasonal variation of the prereversal enhancement of the vertical drift is associated with the time difference between the sunset times of the conjugate E-regions (magnetic field line linked to F-region) which is indicative of the longitudinal gradients of the conductivity (of the E-region). The vertical drifts and the causative zonal electric fields at Trivandrum are compared with those at Jicamarca and F-region zonal electric field models. It is seen that the night-time downward drift (as also the causative westward electric field) at Jicamarca is greater than that at Trivandrum. The prereversal enhancement of the drift is greater at Jicamarca than at Trivandrum during the summer and the equinoxes, whereas during the winter the opposite is the case.


2009 ◽  
Vol 27 (1) ◽  
pp. 279-296 ◽  
Author(s):  
Y. S. Dimant ◽  
M. M. Oppenheim ◽  
G. M. Milikh

Abstract. Meteoroids traversing the E-region ionosphere leave behind extended columns of elevated ionization known as the meteor plasma trails. To accurately interpret radar signals from trails and use them for diagnostics, one needs to model plasma processes associated with their structure and evolution. This paper describes a 3-D quantitative theory of the electrostatic interaction between a dense plasma trail, the ionosphere, and a DC electric field driven by an external dynamo. A simplified water-bag model of the meteor plasma shows that the highly conducting trail efficiently short-circuits the ionosphere and creates a vast region of currents that flow through and around the trail. We predict that the trail can induce electric fields reaching a few V/m, both perpendicular and parallel to the geomagnetic field. The former may drive plasma instabilities, while the latter may lead to strong heating of ionospheric electrons. We discuss physical and observational implications of these processes.


2020 ◽  
Author(s):  
Jann-Yenq Liu ◽  
Chi-Yen Lin ◽  
Fu-Yuan Chang ◽  
Yuh-Ing Chen

&lt;p&gt;FORMOSAT-7/COSMIC-2 (F7/C2), with the mission orbit of 550 km altitude, 24-deg inclination, and a period of 97 minutes, was launched on 25 June 2019.&amp;#160; Tri-GNSS Radio occultation System (TGRS), Ion Velocity Meter (IVM), and RF beacon onboard F7/C2 six small satellites allow scientists to observe the plasma structure and dynamics in the mid-latitude, low-latitude, and equatorial ionosphere in detail. &amp;#160;F7/C2 TGRS sounds ionospheric RO (radio occultation) electron density profiles, while F7/C2 IVM probes the ion density, ion temperature, and ion velocity at the satellite altitude.&amp;#160; The F7/C2 electron density profiles and the ion density, ion temperature, and ion velocity, as well as the global ionospheric map (GIM) of the total electron content (TEC) derived from global ground-based GPS receivers are used to detect seismo-ionospheric precursors (SIPs) of the 14 November 2019 M7.1 Indonesia Earthquake.&amp;#160; The GIM TEC and F7/C2 RO NmF2 significantly increase specifically over the epicenter on 25-26 October, which indicates SIPs of the 14 November 2019 M7.1 Indonesia Earthquake being detected.&amp;#160; The F7/C2 RO electron density profiles upward motions suggest that the eastward electric fields have been enhanced during the SIP days of the 2019 M7.1 Indonesia earthquake.&amp;#160; The seismo-generated electric fields of the 2019 M7.1 Indonesia earthquake are 0.34-0.64 mV/m eastward. &amp;#160;The results demonstrate that F7/C2 can be employed to detect SIPs in the ionospheric plasma, which shall shed some light on earthquake prediction/forecast.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document