scholarly journals Study of whistler mode instability in Saturn's magnetosphere

2006 ◽  
Vol 24 (6) ◽  
pp. 1705-1712 ◽  
Author(s):  
R. P. Singhal ◽  
A. K. Tripathi

Abstract. A dispersion relation for parallel propagating whistler mode waves has been applied to the magnetosphere of Saturn and comparisons have been made with the observations made by Voyager and Cassini. The effect of hot (suprathermal) electron-density, temperature, temperature anisotropy, and the spectral index parameter, κ, on the temporal growth rate of the whistler mode emission is studied. A good agreement is found with observations. Electron pitch angle and energy diffusion coefficients have been obtained using the calculated temporal growth rates.

2017 ◽  
Vol 6 (2) ◽  
pp. 26 ◽  
Author(s):  
R. Kaur ◽  
R. S. Pandey

In this paper whistler mode waves have been investigated in magnetosphere of Saturn. The derivation for perturbed distribution function, dispersion relation and growth rate have been determined by using the method of characteristic and kinetic approach. Analytical expressions for growth rate and real frequency of whistlers propagating oblique to magnetic field direction are attained. Calculations have been performed at 6 radial distances in plasma sheet region of Saturn’s magnetosphere as per data provided by Cassini. Work has been extended for bi-Maxwellian as well as Loss-cone distribution function. Parametric analysis show that temperature anisotropy, increase in number density, energy density and angle of propagation increases the growth rate of whistler waves along with significant shift in wave number. In case of Loss-cone distribution, increase in growth rate of whistlers is significantly more than for bi-Maxwellian distribution function. Generation of second harmonics can also be seen in the graphs plotted. It is concluded that parallel DC field stabilizes the wave and temperature anisotropy, angle of propagation, number density and energy density of electrons enhances the growth rate. Thus the results are of importance in analyzing observed VLF emissions over wide spectrum of frequency range in Saturnian magnetosphere. The analytical model developed can also be used to study various types of instabilities in planetary magnetospheres. 


2021 ◽  
Vol 2062 (1) ◽  
pp. 012019
Author(s):  
Kumari Neeta Shukla ◽  
Devi Singh ◽  
R S Pandey

Abstract Whistlers are believed to be generated by its own and responsible to evolve dynamical properties of magnetized planetary environment. Growing whistler instability can cause other uncertainties in the magnetosphere and evident to be generated by mean of injection events and temperature variance in plasma environment. In this paper the empirical dispersion relation has developed for parallel propagating whistler mode instability in an infinite saturnian magneto plasma in the presence of perpendicular electric field for ring distribution function having non-monotonous nature. Method of characteristics solutions alongside kinetic approach found to be most suitable in order to achieve perturbed plasma states. The perturbed and unperturbed particle trajectories have taken into consideration to determine perturbed distribution function. A remarkable growth rate expression with added hot plasma injection has been calculated in inner magnetosphere near 6.18 Rs. The results obtained using demonstrative value of the parameters suited to the Saturnian magnetosphere have been computed and discussed. Pressure (Temperature) anisotropy is found to be a peculiar source of free energy for whistler mode instability. The AC frequency irrespective of its magnitude, affects the growth rate significantly. The bulk of energetic hot electrons injection influences the growth rate by increasing its peak value. The result obtained provide the important view of wave particle interaction and useful to analyze the VLF emissions observed over a wide frequency range.


2021 ◽  
Author(s):  
Xiao Ma ◽  
Anmin Tian ◽  
Quanqi Shi ◽  
Shichen Bai ◽  
Ji Liu ◽  
...  

<p>In the two flanks of the Earth’s magnetosphere, the compressional Pc5 waves are often observed. Previous study suggests that these waves are usually excited by plasma pressure anisotropy such as drift mirror instability. Interestingly, whistler mode waves are often observed in the magnetic trough regions of the compressional Pc5 waves. In this study, we use 10 years (2007-2016) THEMIS A data to study the electron distributions in the compressional Pc5 waves associated with the whistler mode waves. We find three typical electron pitch angle distributions (PADs) in these compressional waves: cigar-shape, donut-shape and pancake-shape. They predominantly occur at tens to hundreds eV, several keV and >10 keV, respectively. The interaction effects between the electrons and whistler waves inside the magnetic troughs are stressed in understanding the formation of these PADs.</p>


2014 ◽  
Vol 41 (17) ◽  
pp. 6063-6070 ◽  
Author(s):  
W. Li ◽  
D. Mourenas ◽  
A. V. Artemyev ◽  
O. V. Agapitov ◽  
J. Bortnik ◽  
...  

1983 ◽  
Vol 29 (3) ◽  
pp. 439-448 ◽  
Author(s):  
H.A. Shah ◽  
V.K. Jain

The excitation of the whistler mode waves propagating obliquely to the constant and uniform magnetic field in a warm and inhomogeneous plasma in the presence of an inhomogeneous beam of suprathermal electrons is studied. The full dispersion relation including electromagnetic effects is derived. In the electrostatic limit the expression for the growth rate is given. It is found that the inhomogeneities in both beam and plasma number densities affect the growth rates of the instabilities.


2017 ◽  
Vol 35 (2) ◽  
pp. 239-252
Author(s):  
Arvind K. Tripathi ◽  
Rajendra P. Singhal ◽  
Onkar N. Singh II

Abstract. Diffuse auroral intensities of neutral atomic oxygen OI λ1356 Å emission on Ganymede due to whistler mode waves are estimated. Pitch angle diffusion of magnetospheric electrons into the loss cone due to resonant wave–particle interaction of whistler mode waves is considered, and the resulting electron precipitation flux is calculated. The analytical yield spectrum approach is used for determining the energy deposition of electrons precipitating into the atmosphere of Ganymede. It is found that the intensities (4–30 R) calculated from the precipitation of magnetospheric electrons observed near Ganymede are inadequate to account for the observational intensities (≤ 100 R). This is in agreement with the conclusions reached in previous works. Some acceleration mechanism is required to energize the magnetospheric electrons. In the present work we consider the heating and acceleration of magnetospheric electrons by electrostatic waves. Two particle distribution functions (Maxwellian and kappa distribution) are used to simulate heating and acceleration of electrons. Precipitation of a Maxwellian distribution of electrons can produce about 70 R intensities of OI λ1356 Å emission for electron temperature of 150 eV. A kappa distribution can also yield a diffuse auroral intensity of similar magnitude for a characteristic energy of about 100 eV. The maximum contribution to the estimated intensity results from the dissociative excitation of O2. Contributions from the direct excitation of atomic oxygen and cascading in atomic oxygen are estimated to be only about 1 and 2 % of the total calculated intensity, respectively. The findings of this work are relevant for the present JUNO and future JUICE missions to Jupiter. These missions will provide new data on electron densities, electron temperature and whistler mode wave amplitudes in the magnetosphere of Jupiter near Ganymede.


Sign in / Sign up

Export Citation Format

Share Document