scholarly journals Aerosol forcing efficiency in the UVA region from spectral solar irradiance measurements at an urban environment

2009 ◽  
Vol 27 (6) ◽  
pp. 2515-2522 ◽  
Author(s):  
S. Kazadzis ◽  
N. Kouremeti ◽  
A. Bais ◽  
A. Kazantzidis ◽  
C. Meleti

Abstract. Spectral Ultraviolet (UV) measurements using a Brewer MKIII double spectroradiometer were used for the determination of the aerosol forcing efficiency (RFE) under cloud free conditions at Thessaloniki, Greece for the period 1998–2006. Using measured spectral UVA irradiance in combination with synchronous aerosol optical depth (AOD) measurements at 340 nm, we calculated the seasonal and the percent RFE changes with the help of radiative transfer model calculations used for cloud and aerosol free conditions reference. The calculated RFE for the 325–340 nm wavelength integral was found to be −0.71±0.30 W m−2/τs340 nm and corresponds to a mean calculated RFE% value of −15.2%±3.8% (2 σ) per unit of τs340 nm, for the whole period. This indicates a mean reduction of 15.2% of the 325–340 nm irradiance for a unit of aerosol optical depth slant column increase. Lower RFE% was found during summertime, which is a possible indication of lower absorbing aerosols. Mean AOD slant at 340 nm for the city of Thessaloniki were processed in combination with RFE% and a mean monthly UVA attenuation of ~10% for the whole period was revealed. The nine years' analysis results showed a reduction in RFE%, which provides a possible indication of the changes in the optical properties over the city area. If such changes are only due to changes in the aerosol absorbing properties, the above finding suggests a 2% per decade increase in UVA due to changes in the aerosol absorption properties, in addition to the calculated increase by 4.2%, which is attributed only to AOD decrease at Thessaloniki area over the 1998–2006 period.

2010 ◽  
Vol 10 (2) ◽  
pp. 331-340 ◽  
Author(s):  
I. Ialongo ◽  
V. Buchard ◽  
C. Brogniez ◽  
G. R. Casale ◽  
A. M. Siani

Abstract. The aerosol Single Scattering Albedo (SSA) and Absorbing Aerosol Optical Depth (AAOD) at 320.1 nm are derived at Rome site by the comparison between Brewer and modelled spectra. The UVSPEC radiative transfer model is used to calculate the UV irradiances for different SSA values, taking into account as input data total ozone and Aerosol Optical Depth (AOD) obtained from Brewer spectral measurements. The accuracy in determining SSA depends on the aerosol amount and on Solar Zenith Angle (SZA) value: SSA uncertainty increases when AOD and SZA decrease. The monthly mean values of SSA and AAOD during the period January 2005–June 2008 are analysed, showing a monthly and seasonal variability. It is found that the SSA and AAOD averages are 0.80±0.08 and 0.056±0.028, respectively. AAOD retrievals are also used to quantify the error in the Ozone Monitoring Instrument (OMI) surface UV products due to absorbing aerosols, not included in the current OMI UV algorithm. OMI and Brewer UV irradiances at 324.1 nm and Erythemal Dose Rates (EDRs) under clear sky conditions, are compared as a function of AAOD. Three methods are considered to investigate on the applicability of an absorbing aerosol correction on OMI UV data at Rome site. Depending on the correction methodology, the bias value decreases from 18% to 2% for spectral irradiance at 324.1 nm and from 25% to 8% for EDR.


2009 ◽  
Vol 9 (5) ◽  
pp. 19009-19033 ◽  
Author(s):  
I. Ialongo ◽  
V. Buchard ◽  
C. Brogniez ◽  
G. R. Casale ◽  
A. M. Siani

Abstract. The aerosol Single Scattering Albedo (SSA) and Absorbing Aerosol Optical Depth (AAOD) at 320.1 nm are derived at Rome site by the comparison between Brewer and modelled spectra. The UVSPEC radiative transfer model is used to calculate the UV irradiances for different SSA values, taking into account as input data total ozone and Aerosol Optical Depth (AOD) obtained from Brewer spectral measurements. The accuracy in determining SSA depends on the aerosol amount and on Solar Zenith Angle (SZA) value: SSA uncertainty increases when AOD and SZA decrease. The monthly mean values of SSA and AAOD during the period January 2005–June 2008 are analysed, showing a monthly and seasonal variability. It is found that the SSA and AAOD averages are 0.80±0.08 and 0.056±0.028, respectively. AAOD retrievals are also used to quantify the error in the Ozone Monitoring Instrument (OMI) surface UV products due to absorbing aerosols, not included in the current OMI UV algorithm. OMI and Brewer UV irradiances at 324.1 nm and Erythemal Dose Rates (EDRs) under clear sky conditions, are compared as a function of AAOD. Three methods are considered to investigate on the applicability of an absorbing aerosol correction on OMI UV data at Rome site. Depending on the correction methodology, the bias value decreases from 18% to 2% for spectral irradiance at 324.1 nm and from 25% to 8% for EDR.


2005 ◽  
Vol 5 (11) ◽  
pp. 3003-3013 ◽  
Author(s):  
S. Houweling ◽  
W. Hartmann ◽  
I. Aben ◽  
H. Schrijver ◽  
J. Skidmore ◽  
...  

Abstract. SCIAMACHY CO2 measurements show a large variability in total column CO2 over the Sahara desert of up to 10%, which is not anticipated from in situ measurements and cannot be explained by results of atmospheric models. Comparisons with colocated aerosol measurements by TOMS and MISR over the Sahara indicate that the seasonal variation of SCIAMACHY-observed CO2 strongly resembles seasonal variations of windblown dust. Correlation coefficients of monthly datasets of colocated MISR aerosol optical depth and SCIAMACHY CO2 vary between 0.6 and 0.8, indicating that about half of the CO2 variance is explained by aerosol optical depth. Radiative transfer model calculations confirm the role of dust and can explain the size of the errors. Sensitivity tests suggest that the remaining variance may largely be explained by variations in the vertical distribution of dust. Further calculations for a few typical aerosol classes and a broad range of atmospheric conditions show that the impact of aerosols on SCIAMACHY retrieved CO2 is by far the largest over the Sahara, but may also reach significant levels elsewhere. Over the continents, aerosols lead mostly to overestimated CO2 columns with the exception of biomass burning plumes and dark coniferous forests. Inverse modelling calculations confirm that aerosol correction of SCIAMACHY CO2 measurements is needed to derive meaningful source and sink estimates. Methods for correcting aerosol-induced errors exist, but so far mainly on the basis of theoretical considerations. As demonstrated by this study, SCIAMACHY may contribute to a verification of such methods using real data.


2005 ◽  
Vol 5 (3) ◽  
pp. 3313-3340 ◽  
Author(s):  
S. Houweling ◽  
W. Hartmann ◽  
I. Aben ◽  
H. Schrijver ◽  
J. Skidmore ◽  
...  

Abstract. SCIAMACHY CO2 measurements show a large variability in total column CO2 over the Sahara desert of up to 10% that is not anticipated from in situ measurements and cannot be explained by results of atmospheric models. Comparisons with colocated aerosol measurements by TOMS and MISR over the Sahara indicate that the seasonal variation of SCIAMACHY-observed CO2 strongly resembles seasonal variations of windblown dust. Correlation coefficients of monthly datasets of colocated MISR aerosol optical depth and SCIAMACHY CO2 vary between 0.6 and 0.8, indicating that about half of the CO2 variance is explained by aerosol optical depth. Radiative transfer model calculations confirm the role of dust and can explain the size of the errors. Sensitivity tests suggest that the remaining variance may largely be explained by variations in the vertical distribution of dust. Further calculations for a few typical aerosol classes and a broad range of atmospheric conditions show that the impact of aerosols on SCIAMACHY retrieved CO2 is by far the largest over the Sahara, but may also reach significant levels elsewhere. Inverse modelling calculations indicate that continental scale source and sink estimation on the basis of SCIAMACHY CO2 data without aerosol correction leads to significant errors. To improve terrestrial CO2 flux estimates by inverse modelling using SCIAMACHY measurements at 1.6μm, aerosol correction will be needed. Methods for correcting aerosol-induced errors exist, but so far mainly on the basis of theoretical considerations. As demonstrated by this study, SCIAMACHY may contribute to a verification of such methods using real data.


2008 ◽  
Vol 8 (5) ◽  
pp. 17467-17493 ◽  
Author(s):  
S. Kazadzis ◽  
A. Bais ◽  
A. Arola ◽  
N. Krotkov ◽  
N. Kouremeti ◽  
...  

Abstract. We have compared spectral ultraviolet overpass irradiances from the Ozone Monitoring Instruments (OMI) against ground-based Brewer measurements at Thessaloniki, Greece from September 2004 to December 2007. It is demonstrated that OMI overestimates UV irradiances by 30%, 17% and 13% for 305 nm, 324 nm, and 380 nm respectively and 20% for erythemally weighted irradiance. The bias between OMI and Brewer increases with increasing aerosol absorption optical thickness. We present methodologies that can be applied for correcting this bias based on experimental results derived from the comparison period and also theoretical approaches using radiative transfer model calculations. All correction approaches minimize the bias and the standard deviation of the ratio OMI versus Brewer ratio. According to the results, the best correction approach suggests that the OMI UV product has to be multiplied by a correction factor CA(λ) are in the order of 0.8, 0.88 and 0.9 for 305 nm, 324 nm and 380 nm respectively. Limitations and possibilities for applying such methodologies in a global scale are also discussed.


2007 ◽  
Vol 7 (23) ◽  
pp. 5937-5943 ◽  
Author(s):  
R. W. Bergstrom ◽  
P. Pilewskie ◽  
P. B. Russell ◽  
J. Redemann ◽  
T. C. Bond ◽  
...  

Abstract. We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.


2015 ◽  
Vol 8 (9) ◽  
pp. 3831-3849 ◽  
Author(s):  
P. Castellanos ◽  
K. F. Boersma ◽  
O. Torres ◽  
J. F. de Haan

Abstract. Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2–O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006–2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3 %, respectively, which was the case for the majority of the pixels considered in our study; 70 % had cloud radiance fraction below 30 %, and 50 % had effective cloud pressure greater than 800 hPa. Pixels with effective cloud radiance fraction greater than 30 % or effective cloud pressure less than 800 hPa corresponded with stronger shielding in the implicit aerosol correction approach because the assumption of an opaque effective cloud underestimates the altitude-resolved AMF; tropospheric AMFs were on average 30–50 % larger when aerosol parameters were included, and for individual pixels tropospheric AMFs can differ by more than a factor of 2. The observation-based approach to correcting tropospheric AMF calculations for aerosol effects presented in this paper depicts a promising strategy for a globally consistent aerosol correction scheme for clear-sky pixels.


2009 ◽  
Vol 9 (2) ◽  
pp. 585-594 ◽  
Author(s):  
S. Kazadzis ◽  
A. Bais ◽  
A. Arola ◽  
N. Krotkov ◽  
N. Kouremeti ◽  
...  

Abstract. We have compared spectral ultraviolet overpass irradiances from the Ozone Monitoring Instruments (OMI) against ground-based Brewer measurements at Thessaloniki, Greece from September 2004 to December 2007. It is demonstrated that OMI overestimates UV irradiances by 30%, 17% and 13% for 305 nm, 324 nm, and 380 nm respectively and 20% for erythemally weighted irradiance. The bias between OMI and Brewer increases with increasing aerosol absorption optical thickness. We present methodologies that can be applied for correcting this bias based on experimental results derived from the comparison period and also theoretical approaches using radiative transfer model calculations. All correction approaches minimize the bias and the standard deviation of the ratio OMI versus Brewer ratio. According to the results, the best correction approach suggests that the OMI UV product has to be multiplied by a correction factor CA(λ) of the order of 0.8, 0.88 and 0.9 for 305 nm, 324 nm and 380 nm respectively. Limitations and possibilities for applying such methodologies in a global scale are also discussed.


2013 ◽  
Vol 30 (5) ◽  
pp. 929-941 ◽  
Author(s):  
Hao Zhang ◽  
Bing Zhang ◽  
Dongmei Chen ◽  
Junsheng Li ◽  
Guangning Zhao

Abstract Beer’s attenuation law is the basis for the retrieval of aerosol optical depth (AOD) from sunphotometer data. However, the filter band function causes uncertainty during the retrieval of AOD from sunphotometer data, particularly for channels covering spectral regions of strong gas absorption. In this work, the uncertainty in AOD retrieval due to the filter band function is systematically analyzed by employing fine spectral absorption cross sections obtained from the Molecular Spectroscopy and Chemical Kinetics Group and the line-by-line radiative transfer model (LBLRTM). The uncertainty in AOD retrieval includes the uncertainty due to the wings of the filter band function in the ultraviolet (UV) region and errors in the optical depth calculation for Rayleigh scattering and absorption of O3, NO2, H2O, CH4, and CO2. The results showed that 1) the uncertainty of AOD retrieval by this method, which is called the approximate AOD retrieval method, might become large when the filter band function is not well designed, particularly in the UV region; 2) in the case of a large zenith observation condition, the errors will be nonnegligible if the Rayleigh scattering optical depth is calculated at a central wavelength without including filter band function; 3) the band-weighted absorption coefficients of O3 and NO2 remain nearly constant when the gas amounts change, except in the case of questionably designed band filters; and 4) these weak-absorption optical depths for H2O, CH4, and CO2 cannot be ignored in the 1020- or 1640-nm channels, where an optical depth error of 0.01−0.02 may be introduced.


Sign in / Sign up

Export Citation Format

Share Document