scholarly journals OMI tropospheric NO<sub>2</sub> air mass factors over South America: effects of biomass burning aerosols

2015 ◽  
Vol 8 (9) ◽  
pp. 3831-3849 ◽  
Author(s):  
P. Castellanos ◽  
K. F. Boersma ◽  
O. Torres ◽  
J. F. de Haan

Abstract. Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2–O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006–2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3 %, respectively, which was the case for the majority of the pixels considered in our study; 70 % had cloud radiance fraction below 30 %, and 50 % had effective cloud pressure greater than 800 hPa. Pixels with effective cloud radiance fraction greater than 30 % or effective cloud pressure less than 800 hPa corresponded with stronger shielding in the implicit aerosol correction approach because the assumption of an opaque effective cloud underestimates the altitude-resolved AMF; tropospheric AMFs were on average 30–50 % larger when aerosol parameters were included, and for individual pixels tropospheric AMFs can differ by more than a factor of 2. The observation-based approach to correcting tropospheric AMF calculations for aerosol effects presented in this paper depicts a promising strategy for a globally consistent aerosol correction scheme for clear-sky pixels.

2015 ◽  
Vol 8 (3) ◽  
pp. 2683-2733 ◽  
Author(s):  
P. Castellanos ◽  
K. F. Boersma ◽  
O. Torres ◽  
J. F. de Haan

Abstract. Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2–O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006–2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3%, respectively, which was the case for the majority of the pixels considered in our study. Pixels with effective cloud radiance fraction greater than 30% or effective cloud pressure less than 800 hPa corresponded with stronger shielding in the implicit aerosol correction approach because the assumption of a opaque effective cloud underestimates the altitude resolved AMF; tropospheric AMFs were on average 30–50% larger when aerosol parameters were included, and for individual pixels tropospheric AMFs can differ by more than a factor of two. The observation-based approach to correcting tropospheric AMF calculations for aerosol effects presented in this paper depicts a promising strategy for a globally consistent aerosol correction scheme for clear sky pixels.


Author(s):  
Qiurui He ◽  
Zhenzhan Wang ◽  
Jieying He

The Microwave Humidity and Temperature sounder (MWHTS) on board the Fengyun (FY)-3C satellite measure the outgoing radiance form the Earth surface and atmospheric constituents. MWHTS makes measurements in the isolated oxygen absorption line near 118 GHz and the vicinity of strong water vapor line around 183 GHz, can provide fine vertical distribution structure of both atmospheric humidity and temperature. However, in order to obtain the accurate soundings of humidity and temperature by the physical retrieval method, bias between the observed radiance and those simulated by radiative transfer model from the background or first guess profiles must be correct. In this study, two bias correction methods are developed through the correlation analysis between MWHTS measurements and air mass identified by the first guess profiles of the physical inversion, one is the linear regression correction (LRC) and the other is neural networks correction (NNC), representing the linear and nonlinear nature between MWHTS measurements and air mass, respectively. Both correction methods have been applied to MWHTS observed brightness temperatures over the geographic area (180&deg; W-180&deg; E, 60&deg; S-60&deg; N). The corrected results are evaluated by the probability density function of the difference between corrected observations and simulated values and the root mean square error (RMSE) with respect to simulated observations. The numerical results show that the NNC method perform better, especially in MWHTS channels 1 and 7-9 whose peak weight function heights are close to the surface. In order to assess the effects of bias correction methods proposed in this study on the retrieval accuracy, a one-dimensional variational system was built and applied to the MWHTS uncorrected and corrected brightness temperatures to estimated atmospheric temperature and humidity profiles, The retrieval results show that the NNC has better performance which is to be expected. An indication of the stability and robustness of NNC method is given which suggests that the NNC method has promising application perspectives in the physical retrieval.


2009 ◽  
Vol 27 (6) ◽  
pp. 2515-2522 ◽  
Author(s):  
S. Kazadzis ◽  
N. Kouremeti ◽  
A. Bais ◽  
A. Kazantzidis ◽  
C. Meleti

Abstract. Spectral Ultraviolet (UV) measurements using a Brewer MKIII double spectroradiometer were used for the determination of the aerosol forcing efficiency (RFE) under cloud free conditions at Thessaloniki, Greece for the period 1998–2006. Using measured spectral UVA irradiance in combination with synchronous aerosol optical depth (AOD) measurements at 340 nm, we calculated the seasonal and the percent RFE changes with the help of radiative transfer model calculations used for cloud and aerosol free conditions reference. The calculated RFE for the 325–340 nm wavelength integral was found to be −0.71±0.30 W m−2/τs340 nm and corresponds to a mean calculated RFE% value of −15.2%±3.8% (2 σ) per unit of τs340 nm, for the whole period. This indicates a mean reduction of 15.2% of the 325–340 nm irradiance for a unit of aerosol optical depth slant column increase. Lower RFE% was found during summertime, which is a possible indication of lower absorbing aerosols. Mean AOD slant at 340 nm for the city of Thessaloniki were processed in combination with RFE% and a mean monthly UVA attenuation of ~10% for the whole period was revealed. The nine years' analysis results showed a reduction in RFE%, which provides a possible indication of the changes in the optical properties over the city area. If such changes are only due to changes in the aerosol absorbing properties, the above finding suggests a 2% per decade increase in UVA due to changes in the aerosol absorption properties, in addition to the calculated increase by 4.2%, which is attributed only to AOD decrease at Thessaloniki area over the 1998–2006 period.


2010 ◽  
Vol 10 (2) ◽  
pp. 331-340 ◽  
Author(s):  
I. Ialongo ◽  
V. Buchard ◽  
C. Brogniez ◽  
G. R. Casale ◽  
A. M. Siani

Abstract. The aerosol Single Scattering Albedo (SSA) and Absorbing Aerosol Optical Depth (AAOD) at 320.1 nm are derived at Rome site by the comparison between Brewer and modelled spectra. The UVSPEC radiative transfer model is used to calculate the UV irradiances for different SSA values, taking into account as input data total ozone and Aerosol Optical Depth (AOD) obtained from Brewer spectral measurements. The accuracy in determining SSA depends on the aerosol amount and on Solar Zenith Angle (SZA) value: SSA uncertainty increases when AOD and SZA decrease. The monthly mean values of SSA and AAOD during the period January 2005–June 2008 are analysed, showing a monthly and seasonal variability. It is found that the SSA and AAOD averages are 0.80±0.08 and 0.056±0.028, respectively. AAOD retrievals are also used to quantify the error in the Ozone Monitoring Instrument (OMI) surface UV products due to absorbing aerosols, not included in the current OMI UV algorithm. OMI and Brewer UV irradiances at 324.1 nm and Erythemal Dose Rates (EDRs) under clear sky conditions, are compared as a function of AAOD. Three methods are considered to investigate on the applicability of an absorbing aerosol correction on OMI UV data at Rome site. Depending on the correction methodology, the bias value decreases from 18% to 2% for spectral irradiance at 324.1 nm and from 25% to 8% for EDR.


2013 ◽  
Vol 30 (5) ◽  
pp. 929-941 ◽  
Author(s):  
Hao Zhang ◽  
Bing Zhang ◽  
Dongmei Chen ◽  
Junsheng Li ◽  
Guangning Zhao

Abstract Beer’s attenuation law is the basis for the retrieval of aerosol optical depth (AOD) from sunphotometer data. However, the filter band function causes uncertainty during the retrieval of AOD from sunphotometer data, particularly for channels covering spectral regions of strong gas absorption. In this work, the uncertainty in AOD retrieval due to the filter band function is systematically analyzed by employing fine spectral absorption cross sections obtained from the Molecular Spectroscopy and Chemical Kinetics Group and the line-by-line radiative transfer model (LBLRTM). The uncertainty in AOD retrieval includes the uncertainty due to the wings of the filter band function in the ultraviolet (UV) region and errors in the optical depth calculation for Rayleigh scattering and absorption of O3, NO2, H2O, CH4, and CO2. The results showed that 1) the uncertainty of AOD retrieval by this method, which is called the approximate AOD retrieval method, might become large when the filter band function is not well designed, particularly in the UV region; 2) in the case of a large zenith observation condition, the errors will be nonnegligible if the Rayleigh scattering optical depth is calculated at a central wavelength without including filter band function; 3) the band-weighted absorption coefficients of O3 and NO2 remain nearly constant when the gas amounts change, except in the case of questionably designed band filters; and 4) these weak-absorption optical depths for H2O, CH4, and CO2 cannot be ignored in the 1020- or 1640-nm channels, where an optical depth error of 0.01−0.02 may be introduced.


2011 ◽  
Vol 4 (7) ◽  
pp. 1481-1490 ◽  
Author(s):  
T. C. Connor ◽  
M. W. Shephard ◽  
V. H. Payne ◽  
K. E. Cady-Pereira ◽  
S. S. Kulawik ◽  
...  

Abstract. The utilization of Tropospheric Emission Spectrometer (TES) Level 2 (L2) retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B) radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO) profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST) are used as input to the Optimal Spectral Sampling (OSS) radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view) and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations) in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2), particularly well-mixed species such as carbon dioxide and methane.


2018 ◽  
Author(s):  
Falguni Patadia ◽  
Robert Levy ◽  
Shana Mattoo

Abstract. Retrieving aerosol optical depth (AOD) from top-of-atmosphere (TOA) satellite-measured radiance requires separating the aerosol signal from the total observed signal. Total TOA radiance includes signal from underlying surface and from atmospheric constituents such as aerosols, clouds and gases. Multispectral retrieval algorithms, such as the dark-target (DT) algorithm that operates upon Moderate Resolution Imaging Spectroradiometer (MODIS, onboard Terra and Aqua satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS, onboard Suomi-NPP) sensors, use wavelength bands in “window” regions. However, while small, the gas absorptions in these bands are non-negligible and require correction. In this paper we use High-resolution TRANsmission (HITRAN) database and Line-by-Line Radiative Transfer Model (LBLRTM) to derive consistent gas corrections for both MODIS and VIIRS wavelength bands. Absorptions from H2O, CO2 and O3 are considered, as well as other trace gases. Even though MODIS and VIIRS bands are “similar”, they are different enough that applying MODIS specific gas corrections to VIIRS observations results in an underestimate of global mean AOD (by 0.01), but with much larger regional AOD biases up to 0.07. As recent studies are attempting to create a long-term data record by joining multiple satellite datasets, including MODIS and VIIRS, the consistency of gas correction becomes even more crucial.


2007 ◽  
Vol 7 (2) ◽  
pp. 5145-5172 ◽  
Author(s):  
C. S. Zerefos ◽  
V. T. Gerogiannis ◽  
D. Balis ◽  
S. C. Zerefos ◽  
A. Kazantzidis

Abstract. Paintings created by famous artists, representing sunsets throughout the period 1500–1900, provide proxy information on the aerosol optical depth following major volcanic eruptions. This is supported by a statistically significant correlation coefficient (0.8) between the measured red-to-green ratios of 327 paintings and the corresponding values of the dust veil index. A radiative transfer model was used to compile an independent time series of aerosol optical depth at 550 nm corresponding to Northern Hemisphere middle latitudes during the period 1500–1900. The estimated aerosol optical depths range from 0.05 for background aerosol conditions, to about 0.6 following the Tambora and Krakatau eruptions and cover a time period mostly outside of the instrumentation era.


2007 ◽  
Vol 7 (15) ◽  
pp. 4027-4042 ◽  
Author(s):  
C. S. Zerefos ◽  
V. T. Gerogiannis ◽  
D. Balis ◽  
S. C. Zerefos ◽  
A. Kazantzidis

Abstract. Paintings created by famous artists, representing sunsets throughout the period 1500–1900, provide proxy information on the aerosol optical depth following major volcanic eruptions. This is supported by a statistically significant correlation coefficient (0.8) between the measured red-to-green ratios of a few hundred paintings and the dust veil index. A radiative transfer model was used to compile an independent time series of aerosol optical depth at 550 nm corresponding to Northern Hemisphere middle latitudes during the period 1500–1900. The estimated aerosol optical depths range from 0.05 for background aerosol conditions, to about 0.6 following the Tambora and Krakatau eruptions and cover a period practically outside of the instrumentation era.


Sign in / Sign up

Export Citation Format

Share Document