scholarly journals Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

2009 ◽  
Vol 27 (11) ◽  
pp. 4147-4155 ◽  
Author(s):  
M. Hamrin ◽  
P. Norqvist ◽  
O. Marghitu ◽  
A. Vaivads ◽  
B. Klecker ◽  
...  

Abstract. In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

2009 ◽  
Vol 27 (11) ◽  
pp. 4131-4146 ◽  
Author(s):  
M. Hamrin ◽  
P. Norqvist ◽  
O. Marghitu ◽  
S. Buchert ◽  
B. Klecker ◽  
...  

Abstract. Here, and in a companion paper by Hamrin et al. (2009) [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15–20 RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E·J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs) as Concentrated Generator Regions (CGRs). We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL). For both CLRs and CGRs, E and J in the GSM y (cross-tail) direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.


2000 ◽  
Vol 18 (11) ◽  
pp. 1399-1411 ◽  
Author(s):  
O. Luízar ◽  
M. V. Stepanova ◽  
J. M. Bosqued ◽  
E. E. Antonova ◽  
R. A. Kovrazhkin

Abstract. Multiple inverted-V structures are commonly observed on the same auroral zone crossing by a low-altitude orbiting satellite. Such structures appear grouped and apparently result from an ionospheric and/or magnetospheric mechanism of stratification. More than two years of AUREOL-3 satellite observations were analyzed to study their properties and their formation in the framework of the ionosphere-magnetosphere coupling model proposed by Tverskoy. This model predicts some natural periodicity in the electrostatic potential profile (and subsequently in the field-aligned current profiles) that could account for oscillations experimentally observed in the auroral zone, such as successive inverted-Vs. Experimental results obtained during quiet or moderately active periods demonstrate that the number of structures observed within a given event is well described by a 'scaling' parameter provided by the hot plasma stratification theory and expressed in terms of the field-aligned current density, the total width of the current band, the plasma sheet ion temperature, and the height-integrated Pedersen conductivity of the ionosphere. The latitudinal width, in the order of 100–200 km at ionospheric altitudes, is relatively independent of the current density, and is determined not only by the existence of a potential difference above the inverted-Vs, but also by basic oscillations of the ionosphere-magnetosphere coupling system predicted by Tverskoy. The large number of cases studied by the AUREOL-3 satellite provides reliable statistical trends which permits the validation of the model and the inference that the multiple structures currently observed can be related directly to oscillations of the magnetospheric potential (or the pressure gradients) on a scale of ~1000-2000 km in the near-Earth plasma sheet. These oscillations arise in the Tverskoy model and may naturally result when the initial pressure gradients needed to generate a large-scale field-aligned current have a sufficiently wide equatorial scale, of about 1 RE or more.Key words: Magnetospheric physics (current systems; energetic particles, precipitating; magnetosphere-ionosphere interactions)


2017 ◽  
Vol 35 (5) ◽  
pp. 1069-1083 ◽  
Author(s):  
Noora Partamies ◽  
James M. Weygand ◽  
Liisa Juusola

Abstract. The presence of very few statistical studies on auroral omega bands motivated us to test-use a semi-automatic method for identifying large-scale undulations of the diffuse aurora boundary and to investigate their occurrence. Five identical all-sky cameras with overlapping fields of view provided data for 438 auroral omega-like structures over Fennoscandian Lapland from 1996 to 2007. The results from this set of omega band events agree remarkably well with previous observations of omega band occurrence in magnetic local time (MLT), lifetime, location between the region 1 and 2 field-aligned currents, as well as current density estimates. The average peak emission height of omega forms corresponds to the estimated precipitation energies of a few keV, which experienced no significant change during the events. Analysis of both local and global magnetic indices demonstrates that omega bands are observed during substorm expansion and recovery phases that are more intense than average substorm expansion and recovery phases in the same region. The omega occurrence with respect to the substorm expansion and recovery phases is in a very good agreement with an earlier observed distribution of fast earthward flows in the plasma sheet during expansion and recovery phases. These findings support the theory that omegas are produced by fast earthward flows and auroral streamers, despite the rarity of good conjugate observations.


2005 ◽  
Vol 23 (7) ◽  
pp. 2531-2557 ◽  
Author(s):  
S. Figueiredo ◽  
G. T. Marklund ◽  
T. Karlsson ◽  
T. Johansson ◽  
Y. Ebihara ◽  
...  

Abstract. Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval. Event 1 occurs during the end of the recovery phase of a strong substorm. A system of auroral arcs associated with convergent electric field structures, with a maximum perpendicular potential drop of about ~10 kV, and upflowing field-aligned currents with densities of 3 µA/m2 (mapped to the ionosphere), was detected at the boundary between the Plasma Sheet Boundary Layer (PSBL) and the Plasma Sheet (PS). The auroral arc structures evolve in shape and in magnitude on a timescale of tens of minutes, merging, broadening and intensifying, until finally fading away after about 50 min. Throughout this time, both the PS region and the auroral arc structure in its poleward part remain relatively fixed in space, reflecting the rather quiet auroral conditions during the end of the substorm. The auroral upward acceleration region is shown for this event to extend beyond 3.9 Earth radii altitude. Event 2 occurs during a more active period associated with the expansion phase of a moderate substorm. Images from the Defense Meteorological Satellite Program (DMSP) F13 spacecraft show that the Cluster spacecraft crossed the horn region of a surge-type aurora. Conjugated with the Cluster spacecraft crossing above the surge horn, the South Pole All Sky Imager recorded the motion and the temporal evolution of an east-west aligned auroral arc, 30 to 50 km wide. Intense electric field variations are measured by the Cluster spacecraft when crossing above the auroral arc structure, collocated with the density gradient at the PS poleward boundary, and coupled to intense upflowing field-aligned currents with mapped densities of up to 20 µA/m2. The surge horn consists of multiple arc structures which later merge into one structure and intensify at the PS poleward boundary. The surge horn and the associated PS region moved poleward with a velocity at the ionospheric level of 0.5 km/s, following the large-scale poleward expansion of the auroral oval associated with the substorm expansion phase. Keywords. Ionosphere (Ionosphere-magnetosphere interacctions; Electric fields and currents; Particle acceleration)


2006 ◽  
Vol 24 (2) ◽  
pp. 637-649 ◽  
Author(s):  
M. Hamrin ◽  
O. Marghitu ◽  
K. Rönnmark ◽  
B. Klecker ◽  
M. André ◽  
...  

Abstract. Here and in the companion paper, Marghitu et al. (2006), we investigate plausible auroral generator regions in the nightside auroral magnetosphere. In this article we use magnetically conjugate data from the Cluster and the FAST satellites during a 3.5-h long event from 19-20 September 2001. Cluster is in the Southern Hemisphere close to apogee, where it probes the plasma sheet and lobe at an altitude of about 18 RE. FAST is below the acceleration region at approximately 0.6 RE. Searching for clear signatures of negative power densities, E·J<0, in the Cluster data we can identify three concentrated generator regions (CGRs) during our event. From the magnetically conjugate FAST data we see that the observed generator regions in the Cluster data correlate with auroral precipitation. The downward Poynting flux observed by Cluster, as well as the scale size of the CGRs, are consistent with the electron energy flux and the size of the inverted-V regions observed by FAST. To our knowledge, these are the first in-situ observations of the crossing of an auroral generator region. The main contribution to E·J<0 comes from the GSE EyJy. The electric field Ey is weakly negative during most of our entire event and we conclude that the CGRs occur when the duskward current Jy grows large and positive. We find that our observations are consistent with a local southward expansion of the plasma sheet and/or rather complicated, 3-D wavy structures propagating over the Cluster satellites. We find that the plasma is working against the magnetic field, and that kinetic energy is being converted into electromagnetic energy. Some of the energy is transported away as Poynting flux.


2010 ◽  
Vol 28 (10) ◽  
pp. 1813-1825 ◽  
Author(s):  
M. Hamrin ◽  
P. Norqvist ◽  
O. Marghitu ◽  
S. Buchert ◽  
B. Klecker ◽  
...  

Abstract. In this article we use three years (2001, 2002, and 2004) of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs) in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs) and Concentrated Generator Regions (CGRs) from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.


2020 ◽  
Vol 6 (5) ◽  
pp. 1183-1189
Author(s):  
Dr. Tridibesh Tripathy ◽  
Dr. Umakant Prusty ◽  
Dr. Chintamani Nayak ◽  
Dr. Rakesh Dwivedi ◽  
Dr. Mohini Gautam

The current article of Uttar Pradesh (UP) is about the ASHAs who are the daughters-in-law of a family that resides in the same community that they serve as the grassroots health worker since 2005 when the NRHM was introduced in the Empowered Action Group (EAG) states. UP is one such Empowered Action Group (EAG) state. The current study explores the actual responses of Recently Delivered Women (RDW) on their visits during the first month of their recent delivery. From the catchment area of each of the 250 ASHAs, two RDWs were selected who had a child in the age group of 3 to 6 months during the survey. The response profiles of the RDWs on the post- delivery first month visits are dwelled upon to evolve a picture representing the entire state of UP. The relevance of the study assumes significance as detailed data on the modalities of postnatal visits are available but not exclusively for the first month period of their recent delivery. The details of the post-delivery first month period related visits are not available even in large scale surveys like National Family Health Survey 4 done in 2015-16. The current study gives an insight in to these visits with a five-point approach i.e. type of personnel doing the visit, frequency of the visits, visits done in a particular week from among those four weeks separately for the three visits separately. The current study is basically regarding the summary of this Penta approach for the post- delivery one-month period.     The first month period after each delivery deals with 70% of the time of the postnatal period & the entire neonatal period. Therefore, it does impact the Maternal Mortality Rate & Ratio (MMR) & the Neonatal Mortality Rates (NMR) in India and especially in UP through the unsafe Maternal & Neonatal practices in the first month period after delivery. The current MM Rate of UP is 20.1 & MM Ratio is 216 whereas the MM ratio is 122 in India (SRS, 2019). The Sample Registration System (SRS) report also mentions that the Life Time Risk (LTR) of a woman in pregnancy is 0.7% which is the highest in the nation (SRS, 2019). This means it is very risky to give birth in UP in comparison to other regions in the country (SRS, 2019). This risk is at the peak in the first month period after each delivery. Similarly, the current NMR in India is 23 per 1000 livebirths (UNIGME,2018). As NMR data is not available separately for states, the national level data also hold good for the states and that’s how for the state of UP as well. These mortalities are the impact indicators and such indicators can be reduced through long drawn processes that includes effective and timely visits to RDWs especially in the first month period after delivery. This would help in making their post-natal & neonatal stage safe. This is the area of post-delivery first month visit profile detailing that the current article helps in popping out in relation to the recent delivery of the respondents.   A total of four districts of Uttar Pradesh were selected purposively for the study and the data collection was conducted in the villages of the respective districts with the help of a pre-tested structured interview schedule with both close-ended and open-ended questions.  The current article deals with five close ended questions with options, two for the type of personnel & frequency while the other three are for each of the three visits in the first month after the recent delivery of respondents. In addition, in-depth interviews were also conducted amongst the RDWs and a total 500 respondents had participated in the study.   Among the districts related to this article, the results showed that ASHA was the type of personnel who did the majority of visits in all the four districts. On the other hand, 25-40% of RDWs in all the 4 districts replied that they did not receive any visit within the first month of their recent delivery. Regarding frequency, most of the RDWs in all the 4 districts received 1-2 times visits by ASHAs.   Regarding the first visit, it was found that the ASHAs of Barabanki and Gonda visited less percentage of RDWs in the first week after delivery. Similarly, the second visit revealed that about 1.2% RDWs in Banda district could not recall about the visit. Further on the second visit, the RDWs responded that most of them in 3 districts except Gonda district did receive the second postnatal visit in 7-15 days after their recent delivery. Less than half of RDWs in Barabanki district & just more than half of RDWs in Gonda district received the third visit in 15-21 days period after delivery. For the same period, the majority of RDWs in the rest two districts responded that they had been entertained through a home visit.


Sign in / Sign up

Export Citation Format

Share Document