scholarly journals On the problem of Plasma Sheet Boundary Layer identification from plasma moments in Earth's magnetotail

2012 ◽  
Vol 30 (9) ◽  
pp. 1331-1343 ◽  
Author(s):  
E. E. Grigorenko ◽  
R. Koleva ◽  
J.-A. Sauvaud

Abstract. The problem of identification of the interface region between the lobe and the Plasma Sheet (PS) – the Plasma Sheet Boundary Layer (PSBL) – using ion moments and magnetic field data often arises in works devoted to statistical studies of various PSBL phenomena. Our experience in the identification of this region based on the analysis of ion velocity distribution functions demonstrated that plasma parameters, such as the ion density and bulk velocity, the plasma beta or the dynamic pressure vary widely depending on the state of magnetotail activity. For example, while field-aligned beams of accelerated ions are often observed propagating along the lobeward edge of the PSBL there are times when no signatures of these beams could be observed. In the last case, a spacecraft moving from the lobe region to the PS registers almost isotropic PS-like ion velocity distribution. Such events may be classified as observations of the outer PS region. In this paper, we attempt to identify ion parameter ranges or their combinations that result in a clear distinction between the lobe, the PSBL and the adjacent PS or the outer PS regions. For this we used 100 crossings of the lobe-PSBL-PS regions by Cluster spacecraft (s/c) made in different periods of magnetotail activity. By eye inspection of the ion distribution functions we first identify and separate the lobe, the PSBL and the adjacent PS or outer PS regions and then perform a statistical study of plasma and magnetic field parameters in these regions. We found that the best results in the identification of the lobe-PSBL boundary are reached when one uses plasma moments, namely the ion bulk velocity and density calculated not for the entire energy range, but for the energies higher than 2 keV. In addition, we demonstrate that in many cases the plasma beta fails to correctly identify and separate the PSBL and the adjacent PS or the outer PS regions.

2000 ◽  
Vol 7 (3/4) ◽  
pp. 173-177
Author(s):  
M. Cremer ◽  
M. Scholer

Abstract. We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.


2020 ◽  
Vol 86 (1) ◽  
Author(s):  
S. Perri ◽  
D. Perrone ◽  
E. Yordanova ◽  
L. Sorriso-Valvo ◽  
W. R. Paterson ◽  
...  

The deviation from thermodynamic equilibrium of the ion velocity distribution functions (VDFs), as measured by the Magnetospheric Multiscale (MMS) mission in the Earth’s turbulent magnetosheath, is quantitatively investigated. Making use of the unprecedented high-resolution MMS ion data, and together with Vlasov–Maxwell simulations, this analysis aims at investigating the relationship between deviation from Maxwellian equilibrium and typical plasma parameters. Correlations of the non-Maxwellian features with plasma quantities such as electric fields, ion temperature, current density and ion vorticity are found to be similar in magnetosheath data and numerical experiments, with a poor correlation between distortions of ion VDFs and current density, evidence that questions the occurrence of VDF departure from Maxwellian at the current density peaks. Moreover, strong correlation has been observed with the magnitude of the electric field in the turbulent magnetosheath, while a certain degree of correlation has been found in the numerical simulations and during a magnetopause crossing by MMS. This work could help shed light on the influence of electrostatic waves on the distortion of the ion VDFs in space turbulent plasmas.


1995 ◽  
Vol 13 (7) ◽  
pp. 698-703 ◽  
Author(s):  
B. V. Rezhenov ◽  
I. M. Vardavas

Abstract. A mechanism for the formation of <theta> aurora connected with the development of an interchange instability on the plasma sheet boundary layer (PSBL) is suggested. The PSBL is assumed to be deep inside the region of closed magnetic field lines. A system of equations connecting currents in the ionosphere and magnetosphere is solved numerically. It is found, using realistic ionospheric and magnetospheric parameters, that in a period of 8–10 min a system of plasma bars directed to the Sun arises at high latitudes. The system of bars is about 1000 km in width and 3000 km in length and approximates the Θ aurora. The suggested mechanism allows an explanation of a number of Θ aurora features such as the appearance probability, electric field directions, energy spectra of precipitating particles, and its location.


2020 ◽  
Author(s):  
Christopher T.S Lorch ◽  
Licia C. Ray ◽  
Clare E.J. Watt ◽  
Robert J. Wilson ◽  
Frances Bagenal ◽  
...  

&lt;p&gt;New insights provided by Juno energetic particle detector measurements indicate signatures of Alfv&amp;#233;nic acceleration are more common than previously anticipated. Studies at Earth show that Alfv&amp;#233;n waves can substantially accelerate plasma within the magnetosphere. At Jupiter, it is now predicted that Alfv&amp;#233;nic acceleration is the dominant mechanism for generating the planet's powerful aurora. This acceleration occurs when the plasma thermal velocity is approximately equal to the Alfv&amp;#233;n velocity, which at Jupiter occurs around the plasma sheet boundary. Using Juno JADE and MAG data, we investigate the regions surrounding the plasma sheet boundary layer in order to identify signatures of Alfv&amp;#233;nic activity. Our study finds correlations between inertial scale magnetic field perturbations and variations in the local plasma population. We suggest that these signatures may be linked to turbulence in the plasma disk, which could be a source of heating for magnetospheric plasma observed in other studies.&lt;/p&gt;


2005 ◽  
Vol 23 (3) ◽  
pp. 867-876 ◽  
Author(s):  
P. Janhunen ◽  
A. Olsson ◽  
W. K. Peterson ◽  
J. D. Menietti

Abstract. Velocity dispersed ion signatures (VDIS) occurring at the plasma sheet boundary layer (PSBL) are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS), i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE), single beamlets at PSBL (VDIS) are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.


1969 ◽  
Vol 3 (3) ◽  
pp. 311-330
Author(s):  
Leonard G. Cohen ◽  
Ira M. Cohen

The structure of the boundary layer separating a collisionless plasma from a one-dimensional magnetic field has been studied for anisotropic particle velocity distribution functions of the form,where F± is a weighting function, H± is the Hamiltonian, a± is a parameter, pz is generalized momenta, m± is particle mass, and δ is the Dirac delta function. Charge neutrality was preserved throughout the boundary layer and self- consistent solutions were obtained for particles having two or three degrees of freedom and moving against either a plane or circular boundary. The results were compared with those for the structure of a boundary layer consistent with a cold streaming plasma having a particle velocity distribution of the form.


1994 ◽  
Vol 12 (2/3) ◽  
pp. 121-138
Author(s):  
D. V. Sarafopoulos ◽  
E. T. Sarris

Abstract. Quasi-periodic Pc 5 pulsations have been reported inside and just outside the Earth's magnetotail during intervals of low geomagnetic activity. In order to further define their characteristics and spatial extent, we present three case studies of simultaneous magnetic field and plasma observations by IMP-8, ISEE-1 (and ISEE-2 in one case) in the Earth's magnetotail and ISEE-3 far upstream of the bow shock, during intervals in which the spacecraft were widely separated. In the first case study, similar pulsations are observed by IMP-8 at the dawn flank of the plasma sheet and by ISEE-1 near the plasma sheet boundary layer (PSBL) near midnight local time. In the second case study, simultaneous pulsations are observed by IMP-8 in the dusk magnetosheath and by ISEE-1 and 2 in the dawn plasma sheet. In the third case study, simultaneous pulsations are observed in the north plasma sheet boundary layer and the south plasma sheet. We conclude that the pulsations occur simultaneously throughout much of the nightside magnetosphere and the surrounding magnetosheath, i.e. that they have a global character. Some additional findings are the following: (a) the observed pulsations are mixed mode compressional and transverse, where the compressional character is more apparent in the close vicinity of the plane ZGSM=0; (b) the compressional pulsations of the magnetic field in the dusk magnetosheath show peaks that coincide (almost one-to-one) with similar peaks observed inside the dawn plasma sheet; (c) in the second case study the polarization sense of the magnetic field and the recurrent left-hand plasma vortices observed in the dawn plasma sheet are consistent with anti-sunward moving waves on the magneto-pause; (d) pulsation amplitudes are weaker in the PSBL(or lobe) as compared with those in the magneto-tail's flanks, suggesting a decay with distance from the magnetopause; (e) the thickness of the plasma sheet (under extremely quiet conditions) is estimated to be ~22 RE at an average location of (X, Y)GSM=(16, 17) RE, whereas at midnight local time the thickness is ~14 RE. The detected pulsations are probably due to the pressure variations (recorded by ISEE-3) in the solar wind, and/or the Kelvin Helmholtz instability in the low-latitude boundary layer or the magnetopause due to a strongly northward IMF.


2020 ◽  
Vol 125 (8) ◽  
Author(s):  
X.‐J. Zhang ◽  
Q. Ma ◽  
A. V. Artemyev ◽  
W. Li ◽  
W. S. Kurth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document