scholarly journals On the role of ozone in long-term trends in the upper atmosphere-ionosphere system

2012 ◽  
Vol 30 (5) ◽  
pp. 811-816 ◽  
Author(s):  
J. Laštovička

Abstract. Origin of long-term trends in the thermosphere-ionosphere system has been discussed since the beginning of trend studies. The two most prioritized explanations have been those via long-term increase of atmospheric concentration of greenhouse gases and long-term increase of geomagnetic activity throughout the 20th century. Secular changes of the Earth's main magnetic field play an important role in trends in a limited region. Recently, Walsh and Oliver (2011) suggested that the long-term cooling of the upper thermosphere (above 200 km) may be due largely to the stratospheric ozone depletion. Here, we show that the role of ozone is very important in the mesosphere and lower thermosphere but not in the upper thermosphere. The suggestion of Walsh and Oliver (2011) is based on historical (before 1988) data from Saint-Santin radar, whereas more recent data do not support their conclusion.

2010 ◽  
Vol 10 (2) ◽  
pp. 2633-2668 ◽  
Author(s):  
J. Lastovicka ◽  
P. Krizan ◽  
M. Kozubek

Abstract. Due to increasing atmospheric concentration of greenhouse gases and changing stratospheric ozone concentration, both of anthropogenic origin, various quantities in the middle atmosphere reveal long-term changes and trends. Lastovicka and Krizan (2006) indicated possibility of change of trends in the dynamics in the northern midlatitude middle atmosphere as a whole in the 1990s. To search for such change of trends we use data on winds in the mesopause region, on total columnar ozone, on ozone laminae, on winds in the middle and lower stratosphere, and on peak electron density in the E region of the ionosphere. One group of quantities, the mesopause region wind-like trends, changes their trends around 1990, the other one, the total ozone-like trends, in the mid-1990s. Altogether they create a skeleton of scenario of the change of the middle atmosphere dynamics trends in the 1990s. Drivers of these changes appear to be different for the first group and for the second group. Tropospheric processes seem to play a role in the changes of trends in middle atmospheric dynamics.


1997 ◽  
Vol 59 (5) ◽  
pp. 497-509 ◽  
Author(s):  
J. Bremer ◽  
R. Schminder ◽  
K.M. Greisiger ◽  
P. Hoffmann ◽  
D. Kürschner ◽  
...  

2018 ◽  
Vol 45 (4) ◽  
pp. 2115-2124 ◽  
Author(s):  
M. H. Denton ◽  
R. Kivi ◽  
T. Ulich ◽  
M. A. Clilverd ◽  
C. J. Rodger ◽  
...  

2019 ◽  
Vol 37 (5) ◽  
pp. 851-875 ◽  
Author(s):  
Sven Wilhelm ◽  
Gunter Stober ◽  
Peter Brown

Abstract. We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere (MLT) made over the last 2 decades. Within this study, we show, based on meteor wind measurement, the long-term variability of winds, tides, and kinetic energy of planetary and gravity waves. These measurements were done between the years 2002 and 2018 for the high-latitude location of Andenes (69.3∘ N, 16∘ E) and the mid-latitude locations of Juliusruh (54.6∘ N, 13.4∘ E) and Tavistock (43.3∘ N, 80.8∘ W). While the climatologies for each location show a similar pattern, the locations differ strongly with respect to the altitude and season of several parameters. Our results show annual wind tendencies for Andenes which are toward the south and to the west, with changes of up to 3 m s−1 per decade, while the mid-latitude locations show smaller opposite tendencies to negligible changes. The diurnal tides show nearly no significant long-term changes, while changes for the semidiurnal tides differ regarding altitude. Andenes shows only during winter a tidal weakening above 90 km, while for the Canadian Meteor Orbit Radar (CMOR) an enhancement of the semidiurnal tides during the winter and a weakening during fall occur. Furthermore, the kinetic energy for planetary waves showed strong peak values during winters which also featured the occurrence of sudden stratospheric warming. The influence of the 11-year solar cycle on the winds and tides is presented. The amplitudes of the mean winds exhibit a significant amplitude response for the zonal component below 82 km during summer and from November to December between 84 and 95 km at Andenes and CMOR. The semidiurnal tides (SDTs) show a clear 11-year response at all locations, from October to November.


2008 ◽  
Vol 26 (5) ◽  
pp. 1181-1187 ◽  
Author(s):  
G. Beig

Abstract. In this paper a brief overview of the changes in atmospheric ion compositions driven by the human-induced changes in related neutral species, and temperature from the troposphere to lower thermosphere has been made. It is found that ionic compositions undergo significant variations. The variations calculated for the double-CO2 scenario are both long-term and permanent in nature. Major neutrals which take part in the lower and middle atmospheric ion chemical schemes and undergo significant changes due to anthropogenic activities are: O, O2, H2O, NO, acetonitrile, pyridinated compounds, acetone and aerosol. The concentration of positive ion/electron density does not change appreciably in the middle atmosphere but indicates a marginal decrease above about 75 km until about 85 km, above which the magnitude of negative trend decreases and becomes negligible at 93 km. Acetonitrile cluster ions in the upper stratosphere are likely to increase, whereas NO+ and NO+(H2O) in the mesosphere and lower thermosphere (MLT) region are expected to decrease for the double CO2 scenario. It is also found that the atmospheric density of pyridinated cluster ions is fast rising in the troposphere.


Sign in / Sign up

Export Citation Format

Share Document