scholarly journals Magnetic clouds' structure in the magnetosheath as observed by Cluster and Geotail: four case studies

2014 ◽  
Vol 32 (10) ◽  
pp. 1247-1261 ◽  
Author(s):  
L. Turc ◽  
D. Fontaine ◽  
P. Savoini ◽  
E. K. J. Kilpua

Abstract. Magnetic clouds (MCs) are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar–terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE) upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the shock obliquity. When the shock is in a quasi-parallel regime, the magnetic field direction varies significantly from the solar wind to the magnetosheath. In such cases, the magnetic field reaching the magnetopause cannot be approximated by the upstream magnetic field. Therefore, it is important to take into account the conditions at the bow shock when estimating the impact of an MC with the Earth's environment because these conditions are crucial in determining the magnetosheath magnetic field, which then interacts with the magnetosphere.

1997 ◽  
Vol 163 ◽  
pp. 799-800
Author(s):  
Craig H. Smith ◽  
Christopher M. Wright ◽  
David K. Aitken ◽  
Patrick F. Roche

AbstractWe present the results from mid-infrared spectro-polarimetric observations of a number of bi-polar outflow sources. The specto-polarimetric data provides information on the polarization mechanism and the magnetic field direction. The field direction in the disks of the observed sources is most often normal to the ambient field direction and lies in the plane of the disk, indicating a toroidal rather than poloidal field configuration.


2019 ◽  
Vol 52 (5) ◽  
pp. 945-950 ◽  
Author(s):  
Shulin Dong ◽  
Tie Liu ◽  
Meng Dong ◽  
Shuang Wang ◽  
Wen Wang ◽  
...  

This paper investigates how applying high magnetic fields influences the crystallographic orientations of the primary and eutectic phases, and their relationship, in a binary eutectic alloy. At 0 T, the primary MnSb phase in hypoeutectic Mn–Sb showed a random orientation, but at 3, 6, 9 and 11.5 T, its c axis was perpendicular to the magnetic field direction. In all cases, the eutectic MnSb phases showed the same orientations as their neighboring primary MnSb phase, on which they nucleated and grew. With high magnetic fields, the c axes of the eutectic and primary MnSb phases were oriented perpendicular to the magnetic field direction. The results show that applying a high magnetic field during solidification is a way of controlling the crystallographic orientation of both the primary and the eutectic phases in eutectic alloys.


1977 ◽  
Vol 82 (35) ◽  
pp. 5555-5562 ◽  
Author(s):  
J. R. Asbridge ◽  
S. J. Bame ◽  
W. C. Feldman ◽  
J. T. Gosling ◽  
N. F. Ness

2014 ◽  
Vol 32 (2) ◽  
pp. 157-173 ◽  
Author(s):  
L. Turc ◽  
D. Fontaine ◽  
P. Savoini ◽  
E. K. J. Kilpua

Abstract. Magnetic clouds (MCs) are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun–Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the magnetosheath; the sign of the magnetic field north–south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the Bx component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the magnetopause (i.e. favourable to reconnection). We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the structure of the MCs unchanged. Note that this model is not restricted to MCs, it can be used to describe the magnetosheath magnetic field under an arbitrary slowly varying interplanetary magnetic field.


2018 ◽  
Vol 36 (2) ◽  
pp. 527-539 ◽  
Author(s):  
Owen W. Roberts ◽  
Yasuhito Narita ◽  
C.-Philippe Escoubet

Abstract. The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂≫P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed. Keywords. Interplanetary physics (MHD waves and turbulence)


2020 ◽  
Author(s):  
Brigitte Schmieder ◽  
Stefaan Poedts ◽  
Christine Verbeke

<p>In 2002 (Cycle 23), a weak impact on the magnetosphere of the Earth has been reported for six halo CMEs related to six X-class flares and with velocities higher than 1000 km/s. The registered Dst minima are all between -17 nT and -50 nT.  A study of the Sun-Earth chain of phenomena related to these CMEs reveals that four of them have a source at the limb and two have a source close to the solar disk center (Schmieder et al., 2020). All of CME magnetic clouds had a low z‑component of the magnetic field, oscillating between positive and negative values.</p><p>We performed a set of EUHFORIA simulations in an attempt to explain the low observed Dst and the observed magnetic fields. We study the degree of deviation of these halo CMEs from the Sun-Earth axis and as well as their deformation and erosion due to their interaction with the ambient solar wind (resulting in magnetic reconnections) according to the input of parameters and their chance to hit other planets. The inhomogeneous nature of the solar wind and encounters  are also important parameters influencing the impact of CMEs on planetary magnetospheres.</p><p> </p>


1998 ◽  
Vol 5 (3) ◽  
pp. 937-939 ◽  
Author(s):  
Nobuhiko Sakai ◽  
Hiroshi Ohkubo ◽  
Yasushi Nakamura

A 3 T superconducting magnet has been designed and constructed for magnetic Compton-profile (MCP) measurements with the new capabilities that the magnetic field direction can be altered quickly (within 5 s) and liquid-He refill is not required for more than one week. For the latter capability, two refrigerators have been directly attached to the cryostat to maintain the low temperature of the radiation shields and for the recondensation of liquid He. The system has been satisfactorily operated for over one week.


2018 ◽  
Vol 145 ◽  
pp. 03003
Author(s):  
Polya Dobreva ◽  
Monio Kartalev ◽  
Olga Nitcheva ◽  
Natalia Borodkova ◽  
Georgy Zastenker

We investigate the behaviour of the plasma parameters in the magnetosheath in a case when Interball-1 satellite stayed in the magnetosheath, crossing the tail magnetopause. In our analysis we apply the numerical magnetosheath-magnetosphere model as a theoretical tool. The bow shock and the magnetopause are self-consistently determined in the process of the solution. The flow in the magnetosheath is governed by the Euler equations of compressible ideal gas. The magnetic field in the magnetosphere is calculated by a variant of the Tsyganenko model, modified to account for an asymmetric magnetopause. Also, the magnetopause currents in Tsyganenko model are replaced by numericaly calulated ones. Measurements from WIND spacecraft are used as a solar wind monitor. The results demonstrate a good agreement between the model-calculated and measured values of the parameters under investigation.


2007 ◽  
Vol 25 (3) ◽  
pp. 785-799 ◽  
Author(s):  
A. Kis ◽  
M. Scholer ◽  
B. Klecker ◽  
H. Kucharek ◽  
E. A. Lucek ◽  
...  

Abstract. Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB) ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document