scholarly journals Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil

2017 ◽  
Vol 35 (3) ◽  
pp. 413-422 ◽  
Author(s):  
Siomel Savio Odriozola ◽  
Francisco Carlos de Meneses Jr. ◽  
Polinaya Muralikrishna ◽  
Alexandre Alvares Pimenta ◽  
Esfhan Alam Kherani

Abstract. A two-stage VS-30 Orion rocket was launched from the equatorial rocket launching station in Alcântara, Brazil, on 8 December 2012 soon after sunset (19:00 LT), carrying a Langmuir probe operating alternately in swept and constant bias modes. At the time of launch, ground equipment operated at equatorial stations showed rapid rise in the base of the F layer, indicating the pre-reversal enhancement of the F region vertical drift and creating ionospheric conditions favorable for the generation of plasma bubbles. Vertical profiles of electron density estimated from Langmuir probe data showed wave patterns and small- and medium-scale plasma irregularities in the valley region (100–300 km) during the rocket upleg and downleg. These irregularities resemble those detected by the very high frequency (VHF) radar installed at Jicamarca and so-called equatorial quasi-periodic echoes. We present evidence suggesting that these observations could be the first detection of this type of irregularity made by instruments onboard a rocket.

2002 ◽  
Vol 29 (10) ◽  
pp. 127-1-127-4 ◽  
Author(s):  
H. Lühr ◽  
S. Maus ◽  
M. Rother ◽  
D. Cooke

2019 ◽  
Author(s):  
Neelakshi Joshi ◽  
Reinaldo R. Rosa ◽  
Siomel Savio ◽  
Esfhan Alam Kherani ◽  
Francisco Carlos de Meneses ◽  
...  

Abstract. In the emerging ionosphere-space-weather paradigm, investigating dynamical properties of ionospheric plasma irregularities using advanced computational non-linear algorithms is providing new insights into their turbulent-like nature, for instance, the evidence of energy distribution via multiplicative cascade. In this study, we present multifractal analysis of the equatorial F region in situ data obtained from two different experiments performed at Alcântara (2.4° S; 44.4° W), Brazil to explore their scaling structures. First experiment observed several large-medium scale plasma bubbles whereas second experiment observed vertical uplift of the base of F region. Multifractal detrended fluctuation analysis and p-model fit is used to analyze the plasma density fluctuation time series. Result shows presence of multifractality with degree of multifractality 0.53–1.1 with 0.29 ≤ p ≤ 0.4 cascading probability for first experiment. Another experimental data also exhibits multifractality with degree of multifractality 0.27–0.33 with 0.42 ≤ p ≤ 0.44 cascading probability in the ionospheric plasma irregularities. Our results confirm the nonhomogeneous nature of plasma irregularities and characterize the underlying nonhomogeneous multiplicative cascade hypothesis in the ionospheric medium. Differences in terms of scaling and complexity in data belonging to different types of phenomena are also addressed.


2021 ◽  
Author(s):  
Haiyong Xie

<p>Ionospheric F‐region irregularity backscatter plumes are commonly regarded as a nighttime phenomenon at equatorial and low latitudes. At daytime, there are very few reported cases of F‐region backscatter echoes. It is still not clear what caused the daytime echoes. In order to understand the occurrence of daytime F‐region echoes, we carried out an experiment with Sanya VHF radar (18.4°N, 109.6°E, dip lat. 12.8°N) during November 2016 to August 2020. Some basic characteristics were released: (1) The daytime F‐region echoing structures have an unexpected high occurrence in June solstice of solar minimum. (2) The echoing structures could appear at any time during 0700–1800 LT, with a maximum occurrence around 0900 LT. (3) The echoing structures appeared mostly above 350 km altitude, extending up to 650 km or more (F region topside) with apparent westward drifts at times. Radar interferometry and ICON satellite in situ results show that the daytime F‐region echoes were from plume structures consisting of field‐aligned irregularities. It is suggested that the plume structures could be remnants of equatorial plasma bubble (EPB) irregularities generated on the previous night around 100–125°E. They rise to high altitudes and drift zonally together with background plasma, causing the daytime F‐region backscattering structure over Sanya. With simultaneous observations of several VHF radars at different locations, satellite in-situ measurements and/or EPB model, the dynamics of daytime F-region backscatter plume structures could be better understood in the future.</p>


2020 ◽  
Vol 38 (2) ◽  
pp. 445-456
Author(s):  
Neelakshi Joshi ◽  
Reinaldo R. Rosa ◽  
Siomel Savio ◽  
Esfhan Alam Kherani ◽  
Francisco Carlos de Meneses ◽  
...  

Abstract. In the emerging ionosphere–space–weather paradigm, investigating the dynamical properties of ionospheric plasma irregularities using advanced computational nonlinear algorithms provide new insights into their turbulent-seeming nature, for instance, the evidence of energy distribution via a multiplicative cascade. In this study, we present a multifractal analysis of the equatorial F region in situ data obtained from two different experiments performed at Alcântara (2.4∘ S, 44.4∘ W), Brazil, to explore their scaling structures. The first experiment observed several medium- to large-scale plasma bubbles whereas the second experiment observed vertical uplift of the base of the F region. The multifractal detrended fluctuation analysis and the p-model fit are used to analyze the plasma density fluctuation time series. The result shows the presence of multifractality with degree of multifractality 0.53–0.93 and 0.3≤p≤0.4 cascading probability for the first experiment. Other experimental data also exhibit multifractality with degree of multifractality 0.19–0.27 and 0.42≤p≤0.44 cascading probability in ionospheric plasma irregularities. Our results confirm the nonhomogeneous nature of plasma irregularities and characterize the underlying nonhomogeneous multiplicative cascade hypothesis in the ionospheric medium. Differences in terms of scaling and complexity in the data belonging to different types of phenomena are also addressed.


Author(s):  
R. T. K. Baker ◽  
R. D. Sherwood

The catalytic gasification of carbon at high temperature by microscopic size metal particles is of fundamental importance to removal of coke deposits and conversion of refractory hydrocarbons into fuels and chemicals. The reaction of metal/carbon/gas systems can be observed by controlled atmosphere electron microscopy (CAEM) in an 100 KV conventional transmission microscope. In the JEOL gas reaction stage model AGl (Fig. 1) the specimen is positioned over a hole, 200μm diameter, in a platinum heater strip, and is interposed between two apertures, 75μm diameter. The control gas flows across the specimen and exits through these apertures into the specimen chamber. The gas is further confined by two apertures, one in the condenser and one in the objective lens pole pieces, and removed by an auxiliary vacuum pump. The reaction zone is <1 mm thick and is maintained at gas pressure up to 400 Torr and temperature up to 1300<C as measured by a Pt-Pt/Rh 13% thermocouple. Reaction events are observed and recorded on videotape by using a Philips phosphor-television camera located below a hole in the center of the viewing screen. The overall resolution is greater than 2.5 nm.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


2013 ◽  
Vol 133 (12) ◽  
pp. 350-357
Author(s):  
Yuta Nakashima ◽  
Ryo Monji ◽  
Katsuya Sato ◽  
Kazuyuki Minami

Sign in / Sign up

Export Citation Format

Share Document