scholarly journals A novel bottom-left packing genetic algorithm for analog module placement

2003 ◽  
Vol 1 ◽  
pp. 191-196 ◽  
Author(s):  
L. Zhang ◽  
U. Kleine

Abstract. This paper presents a novel genetic algorithm for analog module placement. It is based on a generalization of the two-dimensional bin packing problem. The genetic encoding and operators assures that all constraints of the problem are always satisfied. Thus the potential problems of adding penalty terms to the cost function are eliminated, so that the search configuration space decreases drastically. The dedicated cost function covers the special requirements of analog integrated circuits. A fractional factorial experiment was conducted using an orthogonal array to study the algorithm parameters. A meta-GA was applied to determine the optimal parameter values. The algorithm has been tested with several local benchmark circuits. The experimental results show this promising algorithm makes the better performance than simulated annealing approach with the satisfactory results comparable to manual placement.

Robotica ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 823-836 ◽  
Author(s):  
Hamed Shorakaei ◽  
Mojtaba Vahdani ◽  
Babak Imani ◽  
Ali. Gholami

SUMMARYThe current paper presents a path planning method based on probability maps and uses a new genetic algorithm for a group of UAVs. The probability map consists of cells that display the probability which the UAV will not encounter a hostile threat. The probability map is defined by three events. The obstacles are modeled in the probability map, as well. The cost function is defined such that all cells are surveyed in the path track. The simple formula based on the unique vector is presented to find this cell position. Generally, the cost function is formed by two parts; one part for optimizing the path of each UAV and the other for preventing UAVs from collision. The first part is a combination of safety and length of path and the second part is formed by an exponential function. Then, the optimal paths of each UAV are obtained by the genetic algorithm in a parallel form. According to the dimensions of path planning, genetic encoding has two or three indices. A new genetic operator is introduced to select an appropriate pair of chromosome for crossover operation. The effectiveness of the method is shown by several simulations.


2012 ◽  
Vol 200 ◽  
pp. 470-473
Author(s):  
Zhen Zhai ◽  
Li Chen ◽  
Xiao Min Han

The multi-constrained bi-objective bin packing problem has many extensive applications. In the loading section of logistics it has mainly been transported by truck. The cost of transportation is not only determined by the bin space utilization, but also by the number of vehicles in transporta¬tion utilization. The type of items and bins is introduced in the mathematical model, as well as the volume of the items. In this paper, the hybrid genetic algorithm which tabu and simulated annealed rules are added for complex container-loading problem is studied. The effective coding and decod-ing method together with flow process diagrams are given.


2014 ◽  
Vol 697 ◽  
pp. 239-243 ◽  
Author(s):  
Xiao Hui Liu ◽  
Yong Gang Xu ◽  
De Ying Guo ◽  
Fei Liu

For mill gearbox fault detection problems, and puts forward combining support vector machine (SVM) and genetic algorithm, is applied to rolling mill gear box fault intelligent diagnosis methods. The choice of parameters of support vector machine (SVM) is a very important for the SVM performance evaluation factors. For the selection of structural parameters of support vector machine (SVM) with no theoretical support, select and difficult cases, in order to reduce the SVM in this respect, puts forward the genetic algorithm to optimize parameters, and the algorithm of the model is applied to rolling mill gear box in intelligent diagnosis, using the global searching property of genetic algorithm and support vector machine (SVM) of the optimal parameter values. Results showed that the suitable avoided into local solution optimization, the method to improve the diagnostic accuracy and is a very effective method of parameter optimization, and intelligent diagnosis for rolling mill gear box provides an effective method.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4362
Author(s):  
Subramaniam Saravana Sankar ◽  
Yiqun Xia ◽  
Julaluk Carmai ◽  
Saiprasit Koetniyom

The goal of this work is to compute the eco-driving cycles for vehicles equipped with internal combustion engines by using a genetic algorithm (GA) with a focus on reducing energy consumption. The proposed GA-based optimization method uses an optimal control problem (OCP), which is framed considering both fuel consumption and driver comfort in the cost function formulation with the support of a tunable weight factor to enhance the overall performance of the algorithm. The results and functioning of the optimization algorithm are analyzed with several widely used standard driving cycles and a simulated real-world driving cycle. For the selected optimal weight factor, the simulation results show that an average reduction of eight percent in fuel consumption is achieved. The results of parallelization in computing the cost function indicates that the computational time required by the optimization algorithm is reduced based on the hardware used.


2018 ◽  
Vol 11 (12) ◽  
pp. 4739-4754 ◽  
Author(s):  
Vladislav Bastrikov ◽  
Natasha MacBean ◽  
Cédric Bacour ◽  
Diego Santaren ◽  
Sylvain Kuppel ◽  
...  

Abstract. Land surface models (LSMs), which form the land component of earth system models, rely on numerous processes for describing carbon, water and energy budgets, often associated with highly uncertain parameters. Data assimilation (DA) is a useful approach for optimising the most critical parameters in order to improve model accuracy and refine future climate predictions. In this study, we compare two different DA methods for optimising the parameters of seven plant functional types (PFTs) of the ORCHIDEE LSM using daily averaged eddy-covariance observations of net ecosystem exchange and latent heat flux at 78 sites across the globe. We perform a technical investigation of two classes of minimisation methods – local gradient-based (the L-BFGS-B algorithm, limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm with bound constraints) and global random search (the genetic algorithm) – by evaluating their relative performance in terms of the model–data fit and the difference in retrieved parameter values. We examine the performance of each method for two cases: when optimising parameters at each site independently (“single-site” approach) and when simultaneously optimising the model at all sites for a given PFT using a common set of parameters (“multi-site” approach). We find that for the single site case the random search algorithm results in lower values of the cost function (i.e. lower model–data root mean square differences) than the gradient-based method; the difference between the two methods is smaller for the multi-site optimisation due to a smoothing of the cost function shape with a greater number of observations. The spread of the cost function, when performing the same tests with 16 random first-guess parameters, is much larger with the gradient-based method, due to the higher likelihood of being trapped in local minima. When using pseudo-observation tests, the genetic algorithm results in a closer approximation of the true posterior parameter value in the L-BFGS-B algorithm. We demonstrate the advantages and challenges of different DA techniques and provide some advice on using it for the LSM parameter optimisation.


Sign in / Sign up

Export Citation Format

Share Document