scholarly journals Dynamic Eigenimage Based Background and Clutter Suppression for Ultra Short-Range Radar

2021 ◽  
Vol 19 ◽  
pp. 71-77
Author(s):  
Matthias G. Ehrnsperger ◽  
Maximilian Noll ◽  
Stefan Punzet ◽  
Uwe Siart ◽  
Thomas F. Eibert

Abstract. Background and clutter suppression techniques are important towards the successful application of radar in complex environments. We investigate eigenimage based methodologies such as principal component analysis (PCA) and apply it to frequency modulated continuous wave (FMCW) radar. The designed dynamic principal component analysis (dPCA) algorithm dynamically adjusts the number of eigenimages that are utilised for the processing of the signal. Furthermore, the algorithm adapts towards the number of objects in the field of view as well as the estimated distances. For the experimental evaluation, the dPCA algorithm is implemented in a multi-static FMCW radar prototype that operates in the K-band at 24 GHz. With this background and clutter removal method, it is possible to increase the signal-to-clutter-ratio (SCR) by 4.9 dB compared to standard PCA with mean removal (MR).

Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Peng Cai ◽  
Xiaokui Yue ◽  
Hongwen Zhang

Abstract In this paper, we present a novel sampling-based motion planning method in various complex environments, especially with narrow passages. We use online the results of the planner in the ADD-RRT framework to identify the types of the local configuration space based on the principal component analysis (PCA). The identification result is then used to accelerate the expansion similar to RRV around obstacles and through narrow passages. We also propose a modified bridge test to identify the entrance of a narrow passage and boost samples inside it. We have compared our method with known motion planners in several scenarios through simulations. Our method shows the best performance across all the tested planners in the tested scenarios.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Shengkun Xie ◽  
Anna T. Lawniczak

Many network monitoring applications and performance analysis tools are based on the study of an aggregate measure of network traffic, for example, number of packets in transit (NPT). The simulation modeling and analysis of this type of performance indicator enables a theoretical investigation of the underlying complex system through different combination of network setups such as routing algorithms, network source loads or network topologies. To detect stationary increase of network source load, we propose a dynamic principal component analysis (PCA) method, first to extract data features and then to detect a stationary load increase. The proposed detection schemes are based on either the major or the minor principal components of network traffic data. To demonstrate the applications of the proposed method, we first applied them to some synthetic data and then to network traffic data simulated from the packet switching network (PSN) model. The proposed detection schemes, based on dynamic PCA, show enhanced performance in detecting an increase of network load for the simulated network traffic data. These results show usefulness of a new feature extraction method based on dynamic PCA that creates additional feature variables for event detection in a univariate time series.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shengkun Xie ◽  
Sridhar Krishnan

Classification of electroencephalography (EEG) is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component analysis and nonoverlapping moving window is proposed. Along with this new technique, two detection methods based on extracted sparse features are applied to deal with signal classification. The obtained results demonstrated that our proposed methodologies are able to differentiate EEGs from controls and interictal for epilepsy diagnosis and to separate EEGs from interictal and ictal for seizure detection. Our approach yields high classification accuracy for both single-channel short-term EEGs and multichannel long-term EEGs. The classification performance of the method is also compared with other state-of-the-art techniques on the same datasets and the effect of signal variability on the presented methods is also studied.


Sign in / Sign up

Export Citation Format

Share Document