scholarly journals Temporal and spatial variations of soil CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O fluxes at three differently managed grasslands

2013 ◽  
Vol 10 (9) ◽  
pp. 5931-5945 ◽  
Author(s):  
D. Imer ◽  
L. Merbold ◽  
W. Eugster ◽  
N. Buchmann

Abstract. A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG) fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed) to 1000 m a.s.l. (moderately intensive managed) to 2000 m a.s.l. (extensively managed). The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42), CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80) by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as locations of permanently lower soil CH4 uptake rates at the extensively managed alpine site. Including hot spots was essential to obtain a representative mean soil flux for the respective ecosystem. At the intensively managed grassland, management effects clearly dominated over effects of environmental drivers on soil N2O fluxes. For CO2 and CH4, the importance of management effects did depend on the status of the vegetation (LAI).

2013 ◽  
Vol 10 (2) ◽  
pp. 2635-2673 ◽  
Author(s):  
D. Imer ◽  
L. Merbold ◽  
W. Eugster ◽  
N. Buchmann

Abstract. A profound understanding of temporal and spatial variabilities of CO2, CH4 and N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three greenhouse gas (GHG) fluxes are due to environmental drivers as well as to fertilizer applications, grazing and cutting events. To assess how these affect GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed) to 1000 m a.s.l. (moderately intensive managed) to 2000 m a.s.l. (extensively managed). Temporal and spatial variabilities of GHG fluxes were quantified along small-scale transects of 16 static soil chambers at each site. We then established functional relationships between drivers and the observed fluxes on diel and annual time scales. Furthermore, spatial variabilities and their effect on representative site-specific mean chamber GHG fluxes were assessed using geostatistical semivariogram approaches. All three grasslands were N2O sources, with mean annual fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were net CH4 sinks, with uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual respiration losses of CO2, as measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42), CH4 and CO2 fluxes were much better constrained (adjusted r2 ranging from 0.41 to 0.83), in particular by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for N2O and CH4 fluxes. We found permanent hot spots for N2O emissions and CH4 uptake at the extensively managed site. Including these hot spots in calculating the mean chamber flux was essential to obtain a representative mean flux for this ecosystem. At the intensively managed grassland, management effects clearly dominated over effects of environmental drivers on N2O fluxes. For CO2 and CH4, the importance of management effects did depend on the status of the vegetation.


2016 ◽  
Author(s):  
N.J. Cowan ◽  
P.E. Levy ◽  
D. Famulari ◽  
M. Anderson ◽  
J. Drewer ◽  
...  

Abstract. Intensively managed grass production in high rainfall temperate climate zones is a globally important source of N2O. Many of these grasslands are occasionally tilled and can lead to increased N2O emissions. This was investigated by comparing N2O fluxes from two adjacent intensively managed grazed grasslands in Scotland, one of which was tilled. A combination of eddy covariance, high resolution dynamic chamber and static chamber methods greatly improved the temporal and spatial coverage of N2O fluxes before and after the tillage event and is recommended to be followed in future studies. Total cumulative fluxes calculated for the tilled and un-tilled fields over the 175 day measurement period were 2.45 ± 0.27 and 2.08 ± 0.23 kg N2O-N ha−1, respectively. N2O emissions from the tilled field increased significantly for several days immediately after ploughing and remained elevated for approximately two months after the tillage event contributing to an estimated increase in N2O fluxes of 1.08 ± 0.14 kg N2O-N ha−1. Cumulative fluxes calculated over a 28 day period in August after the application of 70 kg-N ha−1 as ammonium nitrate to both fields were estimated at 0.42 ± 0.15 and 0.75 ± 0.14 kg N2O N ha−1 for the tilled and un-tilled fields, respectively. The tillage event appears to have substantially increased N2O fluxes from the tilled grassland field over a two month period; however, this increase may have been fractionally offset by a decrease in emissions after the August fertilisation event.


2018 ◽  
Author(s):  
Kathrin Fuchs ◽  
Lukas Hörtnagl ◽  
Nina Buchmann ◽  
Werner Eugster ◽  
Valerie Snow ◽  
...  

Abstract. Replacing fertilizer nitrogen with biological nitrogen fixation (BNF) through legumes has been suggested as a strategy for nitrous oxide (N2O) mitigation from intensively managed grasslands. While current literature provides evidence for an N2O emission reduction effect due to reduced fertilizer input, little is known about the effect of increased legume proportions potentially offsetting these reductions, i.e. by increased N2O emissions from plant residues and root exudates. In order to assess the overall effect of this mitigation strategy on permanent grassland, we performed an in-situ experiment to quantify net N2O fluxes and biomass yields in two differently managed grass-clover mixtures. We measured N2O fluxes in an unfertilized parcel with high clover proportions vs. a fertilized control parcel with low clover proportions using the eddy–covariance (EC) technique over two years. Furthermore, we related the measured N2O fluxes to management and environmental drivers. To assess the effect of the mitigation strategy, we measured biomass yields and quantified biologically fixed nitrogen using the 15N natural abundance method. The mitigation management effectively reduced N2O emissions by 54 % and 39 % in 2015 and 2016, respectively. These reductions in N2O emissions can be attributed to the absence of fertilization on the clover parcel. Differences in clover proportions during periods with no recent management showed no measurable effect on N2O emissions, indicating that decomposition of plant residues and rhizodeposition did not compensate the effect of fertilizer reduction on N2O emissions. Annual biomass yields were similar under mitigation management, resulting in a reduction of N2O emission intensities from 0.42 g N2O-N kg−1 DM (control) to 0.28 g N2O-N kg−1 DM (clover parcel) over the two years observation period. We conclude that N2O emissions from fertilized grasslands can be effectively reduced without losses in yield by increasing the clover proportion and reducing fertilization.


2013 ◽  
Vol 43 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Rodrigo da Silveira Nicoloso ◽  
Cimélio Bayer ◽  
Genuir Luis Denega ◽  
Paulo Armando Victória de Oliveira ◽  
Martha Mayumi Higarashi ◽  
...  

Assessments of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions are critical for determination of the agricultural practices' potential to mitigate global warming. This study evaluated the photoacoustic spectroscopy (PAS) for the assessment of soil greenhouse gases (GHG) fluxes in comparison to the standard gas chromatography (GC) method. Two long-term experiments with different tillage and cropping systems over a Paleudult were evaluated using static chambers. PAS measurements of CO2 and N2O concentrations showed good relationship and linearity (R2=0.98 and 0.94, respectively) with GC results. However, CH4 measurements were significantly affected by air sample moisture which interfered on CH4 detection by PAS. Overestimation of CO2 and N2O concentrations in air samples determined by PAS (14.6 and 18.7%, respectively) were also related to sampling moisture. CO2 and N2O fluxes showed good agreement between methods (R2=0.96 and 0.95, respectively), though PAS overestimated fluxes by 18.6 and 13.6% in relation to GC results, respectively. PAS showed good sensitivity and was able to detect CO2 and N2O fluxes as low as 332mg CO2 m-2 h-1 and 21µg N2O m-2 h-1. PAS analyzer should be detailed calibrated to reduce humidity interference on CO2, CH4 and N2O concentrations measurements avoiding overestimation or erroneous determination of soil GHG fluxes.


2018 ◽  
Vol 15 (18) ◽  
pp. 5519-5543 ◽  
Author(s):  
Kathrin Fuchs ◽  
Lukas Hörtnagl ◽  
Nina Buchmann ◽  
Werner Eugster ◽  
Val Snow ◽  
...  

Abstract. Replacing fertiliser nitrogen with biologically fixed nitrogen (BFN) through legumes has been suggested as a strategy for nitrous oxide (N2O) mitigation from intensively managed grasslands. While current literature provides evidence for an N2O emission reduction effect due to reduced fertiliser input, little is known about the effect of increased legume proportions potentially offsetting these reductions, i.e. by increased N2O emissions from plant residues and root exudates. In order to assess the overall effect of this mitigation strategy on permanent grassland, we performed an in situ experiment and quantified net N2O fluxes and biomass yields in two differently managed grass–clover mixtures. We measured N2O fluxes in an unfertilised parcel with high clover proportions vs. an organically fertilised control parcel with low clover proportions using the eddy covariance (EC) technique over 2 years. Furthermore, we related the measured N2O fluxes to management and environmental drivers. To assess the effect of the mitigation strategy, we measured biomass yields and quantified biologically fixed nitrogen using the 15N natural abundance method. The amount of BFN was similar in both parcels in 2015 (control: 55±5 kg N ha−1 yr−1; clover parcel: 72±5 kg N ha−1 yr−1) due to similar clover proportions (control: 15 % and clover parcel: 21 %), whereas in 2016 BFN was substantially higher in the clover parcel compared to the much lower control (control: 14±2 kg N ha−1 yr−1 with 4 % clover in DM; clover parcel: 130±8 kg N ha−1 yr−1 and 44 % clover). The mitigation management effectively reduced N2O emissions by 54 % and 39 % in 2015 and 2016, respectively, corresponding to 1.0 and 1.6 t ha−1 yr−1 CO2 equivalents. These reductions in N2O emissions can be attributed to the absence of fertilisation on the clover parcel. Differences in clover proportions during periods with no recent management showed no measurable effect on N2O emissions, indicating that the decomposition of plant residues and rhizodeposition did not compensate for the effect of fertiliser reduction on N2O emissions. Annual biomass yields were similar under mitigation management, resulting in a reduction of N2O emission intensities from 0.42 g N2O-N kg−1 DM (control) to 0.28 g N2O-N kg−1 DM (clover parcel) over the 2-year observation period. We conclude that N2O emissions from fertilised grasslands can be effectively reduced without losses in yield by increasing the clover proportion and reducing fertilisation.


2016 ◽  
Vol 13 (16) ◽  
pp. 4811-4821 ◽  
Author(s):  
Nicholas J. Cowan ◽  
Peter E. Levy ◽  
Daniela Famulari ◽  
Margaret Anderson ◽  
Julia Drewer ◽  
...  

Abstract. Intensively managed grass production in high-rainfall temperate climate zones is a globally important source of N2O. Many of these grasslands are occasionally tilled to rejuvenate the sward, and this can lead to increased N2O emissions. This was investigated by comparing N2O fluxes from two adjacent intensively managed grazed grasslands in Scotland, one of which was tilled. A combination of eddy covariance, high-resolution dynamic chamber and static chamber methods was used. N2O emissions from the tilled field increased significantly for several days immediately after ploughing and remained elevated for approximately 2 months after the tillage event contributing to an estimated increase in N2O fluxes of 0.85 ± 0.11 kg N2O-N ha−1. However, any influence on N2O emissions after this period appears to be minimal. The cumulative N2O emissions associated with the tillage event and a fertiliser application of 70 kg N ammonia nitrate from one field were not significantly different from the adjacent untilled field, in which two fertiliser applications of 70 kg N ammonia nitrate occurred during the same period. Total cumulative fluxes calculated for the tilled and untilled fields over the entire 175-day measurement period were 2.14 ± 0.18 and 1.65 ± 1.02 kg N2O-N ha−1, respectively.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 251 ◽  
Author(s):  
Kerou Zhang ◽  
Haidong Wu ◽  
Mingxu Li ◽  
Zhongqing Yan ◽  
Yong Li ◽  
...  

Forest nitrous oxide (N2O) emission plays an important role in the greenhouse gas budget of forest ecosystems. However, spatial variability in N2O fluxes complicates the determination of key factors of N2O fluxes at different scales. Based on an updated database of N2O fluxes and the main edaphic factors of global forests, the magnitude of N2O fluxes from forests and the relationships between edaphic factors and N2O fluxes at different scales were analyzed. According to the results, the average annual N2O flux of the global forest was 142.91 ± 14.1 mg N m−2 year−1. The range of total forest estimated N2O emission was 4.45–4.69 Tg N in 2000. N2O fluxes from forests with different leaf traits (broadleaved and coniferous) have significant differences in magnitude, whereas the leaf habit (evergreen and deciduous) was an important characteristic reflecting different patterns of N2O seasonal variations. The main factors affecting N2O fluxes on the global scale were ammonium (NH4+) and nitrate (NO3−) concentrations. With an increasing scale (from the site scale to the regional scale to the global scale), the explanatory power of the five edaphic factors to N2O flux decreased gradually. In addition, the response curves of N2O flux to edaphic factors were diversified among different scales. At both the global and regional scales, soil hydrothermal condition (water filled pore space (WFPS) and soil temperature) might not be the main spatial regulation for N2O fluxes, whereas soil nutrient factors (particularly NO3− concentration) could contribute more on N2O flux spatial variations. The results of site-control analysis demonstrated that there were high spatial heterogeneity of the main N2O controls, showing N2O fluxes from low latitude forests being more likely associated with soil WFPS and temperature. Thus, our findings provide valuable insights into the regulatory edaphic factors underlying the variability in N2O emissions, when modeling at different scales.


2020 ◽  
Author(s):  
Annalea Lohila ◽  
Mika Korkiakoski ◽  
Paavo Ojanen ◽  
Kari Minkkinen ◽  
Timo Penttilä ◽  
...  

&lt;p&gt;Drainage and other management activities in peatlands make especially the fertile sites a source of greenhouse gases into the atmosphere. In addition to typically losing carbon dioxide (CO2) from the old peat, they act as sources of nitrous oxide (N2O) into the atmosphere. In contrary to CO2, N2O fluxes do not necessarily show a distinct seasonal cycle with high emissions in summer and low in winter. Instead, the most intense peaks in N2O fluxes have been earlier attributed to freezing-thawing cycles of peat soil. Emissions of N2O have been reported to vary greatly both in time and space. Due to instrument limitations, the fluxes have been typically measured using manual chamber technique which provides only a snapshot of the potentially highly dynamic fluxes.&lt;/p&gt;&lt;p&gt;In this presentation we show multi-year results of N2O fluxes captured by automatic chambers and compare those to temporally sparse manual chamber measurements. Our study site was a nutrient-rich drained peatland &amp;#8216;Lettosuo&amp;#8217; located in Tammela in southern Finland. The peatland, originally an herb-rich tall sedge pine fen was drained for forestry in 1969. After that, the tree stand was a mixture of Scots pine, Norway spruce and Downy birch. N2O fluxes were measured hourly with six automatic chambers. We will address the temporal and spatial variability in the fluxes and the plausible reasons behind them, including the drought of summer 2018, and give a summary of the exploitability of different methods. Suggestions for an improved chamber configuration and for the optimal sampling frequency for manual chambers will be given based on the results.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Author(s):  
Qi Wei ◽  
Junzeng Xu ◽  
Linxian Liao ◽  
Yawei Li ◽  
Haiyu Wang ◽  
...  

To reveal the effect of irrigation salinity on soil nitrous oxide (N2O) emission, pot experiments were designed with three irrigation salinity levels (NaCl and CaCl2 of 1, 2.5 and 4 g/L equivalence, Ec = 3.6, 8.1 and 12.7 ds/m), either for 0 kg N/ha (N0) or 120 kg N/ha (N120) nitrogen inputs. N2O emissions from soils irrigated at different salinity levels varied in a similar pattern which was triggered by soil moisture dynamics. Yet, the magnitudes of pulse N2O fluxes were significantly varied, with the peak flux at 5 g/L irrigation salinity level being much higher than at 2 and 8 g/L. Compared to fresh water irrigated soils, cumulative N2O fluxes were reduced by 22.7% and 39.6% (N0), 29.1% and 39.2% (N120) for soils irrigated with 2 and 8 g/L saline water, while they were increased by 87.7% (N0) and 58.3% (N120) for soils irrigated with 5 g/L saline water. These results suggested that the effect degree of salinity on consumption and production of N2O might vary among irrigation salinity ranges. As such, desalinating brackish water to a low salinity level (such as 2 g/L) before it is used for irrigation might be helpful for solving water resources crises and mitigating soil N2O emissions.


2011 ◽  
Vol 4 (10) ◽  
pp. 2293-2303 ◽  
Author(s):  
R. J. Martin ◽  
A. M. Bromley ◽  
M. J. Harvey ◽  
R. C. Moss ◽  
E. Pattey ◽  
...  

Abstract. We describe the design and testing of a flexible bag ("Lung") accumulator attached to a gas chromatographic (GC) analyzer capable of measuring surface-atmosphere greenhouse gas exchange fluxes in a wide range of environmental/agricultural settings. In the design presented here, the Lung can collect up to three gas samples concurrently, each accumulated into a Tedlar bag over a period of 20 min or longer. Toggling collection between 2 sets of 3 bags enables quasi-continuous collection with sequential analysis and discarding of sample residues. The Lung thus provides a flexible "front end" collection system for interfacing to a GC or alternative analyzer and has been used in 2 main types of application. Firstly, it has been applied to micrometeorological assessment of paddock-scale N2O fluxes, discussed here. Secondly, it has been used for the automation of concurrent emission assessment from three sheep housed in metabolic crates with gas tracer addition and sampling multiplexed to a single GC. The Lung allows the same GC equipment used in laboratory discrete sample analysis to be deployed for continuous field measurement. Continuity of measurement enables spatially-averaged N2O fluxes in particular to be determined with greater accuracy, given the highly heterogeneous and episodic nature of N2O emissions. We present a detailed evaluation of the micrometeorological flux estimation alongside an independent tuneable diode laser system, reporting excellent agreement between flux estimates based on downwind vertical concentration differences. Whilst the current design is based around triplet bag sets, the basic design could be scaled up to a larger number of inlets or bags and less frequent analysis (longer accumulation times) where a greater number of sampling points are required.


Sign in / Sign up

Export Citation Format

Share Document