scholarly journals A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink

2013 ◽  
Vol 10 (11) ◽  
pp. 7793-7815 ◽  
Author(s):  
P. Landschützer ◽  
N. Gruber ◽  
D. C. E. Bakker ◽  
U. Schuster ◽  
S. Nakaoka ◽  
...  

Abstract. The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink has been shown to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 through 2007 in the Atlantic Ocean. We benefit from (i) a continuous improvement of the observations, i.e. the Surface Ocean CO2 Atlas (SOCAT) v1.5 database and (ii) a newly developed technique to interpolate the observations in space and time. In particular, we use a two-step neural network approach to reconstruct basin-wide monthly maps of the sea surface partial pressure of CO2 (pCO2) at a resolution of 1° × 1°. From those, we compute the air–sea CO2 flux maps using a standard gas exchange parameterization and high-resolution wind speeds. The neural networks fit the observed pCO2 data with a root mean square error (RMSE) of about 10 μatm and with almost no bias. A check against independent time-series data and new data from SOCAT v2 reveals a larger RMSE of 22.8 μatm for the entire Atlantic Ocean, which decreases to 16.3 μatm for data south of 40° N. We estimate a decadal mean uptake flux of −0.45 ± 0.15 Pg C yr−1 for the Atlantic between 44° S and 79° N, representing the sum of a strong uptake north of 18° N (−0.39 ± 0.10 Pg C yr−1), outgassing in the tropics (18° S–18° N, 0.11 ± 0.07 Pg C yr−1), and uptake in the subtropical/temperate South Atlantic south of 18° S (−0.16 ± 0.06 Pg C yr−1), consistent with recent studies. The strongest seasonal variability of the CO2 flux occurs in the temperature-driven subtropical North Atlantic, with uptake in winter and outgassing in summer. The seasonal cycle is antiphased in the subpolar latitudes relative to the subtropics largely as a result of the biologically driven winter-to-summer drawdown of CO2. Over the 10 yr analysis period (1998 through 2007), sea surface pCO2 increased faster than that of the atmosphere in large areas poleward of 40° N, while in other regions of the North Atlantic the sea surface pCO2 increased at a slower rate, resulting in a barely changing Atlantic carbon sink north of the Equator (−0.01 ± 0.02 Pg C yr−1 decade−1). Surface ocean pCO2 increased at a slower rate relative to atmospheric CO2 over most of the Atlantic south of the Equator, leading to a substantial trend toward a stronger CO2 sink for the entire South Atlantic (−0.14 ± 0.02 Pg C yr−1 decade−1). In contrast to the 10 yr trends, the Atlantic Ocean carbon sink varies relatively little on inter-annual timescales (±0.04 Pg C yr−1; 1 σ).

2013 ◽  
Vol 10 (5) ◽  
pp. 8799-8849 ◽  
Author(s):  
P. Landschützer ◽  
N. Gruber ◽  
D. C. E. Bakker ◽  
U. Schuster ◽  
S. Nakaoka ◽  
...  

Abstract. The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from (i) a continuous improvement of the observations, i.e., the Surface Ocean CO2 Atlas (SOCAT) v1.5 database and (ii) a newly developed technique to interpolate the observations in space and time. In particular, we use a 2 step neural network approach to reconstruct basin-wide monthly maps of the sea surface partial pressure of CO2 (pCO2) at a resolution of 1° × 1°. From those, we compute the air–sea CO2 flux maps using a standard gas exchange parameterization and high-resolution wind speeds. The neural networks fit the observed pCO2 data with a root mean square error (RMSE) of about 10 μatm and with almost no bias. A check against independent time series data reveals a larger RMSE of about 17 μatm. We estimate a decadal mean uptake flux of –0.45 ± 0.15 Pg C yr–1 for the Atlantic between 44° S and 79° N, representing the sum of a strong uptake north of 18° N (–0.39 ± 0.10 Pg C yr–1), outgassing in the tropics (18° S–18° N, 0.11 ± 0.07 Pg C yr–1), and uptake in the subtropical/temperate South Atlantic south of 18° S (–0.16 ± 0.06 Pg C yr–1), consistent with recent studies. We find the strongest seasonal variability of the CO2 flux in the temperature driven subtropical North Atlantic, with uptake in winter and outgassing in summer. The seasonal cycle is antiphased in the subpolar latitudes relative to the subtropics largely as a result of the biologically driven winter-to-summer drawdown of CO2. Over the analysis period (1998 to 2007) sea surface pCO2 increased faster than that of the atmosphere in large areas poleward of 40° N, but many other parts of the North Atlantic increased more slowly, resulting in a barely changing Atlantic carbon sink north of the equator (–0.007 Pg C yr–1 decade–1). Surface ocean pCO2 was also increasing less than that of the atmosphere over most of the Atlantic south of the equator, leading to a substantial trend toward a stronger CO2 sink for the entire South Atlantic (–0.14 Pg C yr–1 decade–1). The Atlantic carbon sink varies relatively little on inter-annual time-scales (±0.04 Pg C yr–1; 1σ).


2015 ◽  
Vol 12 (23) ◽  
pp. 7251-7278 ◽  
Author(s):  
C. Rödenbeck ◽  
D. C. E. Bakker ◽  
N. Gruber ◽  
Y. Iida ◽  
A. R. Jacobson ◽  
...  

Abstract. Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea–air CO2 fluxes are investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the eastern equatorial Pacific. Despite considerable spread in the detailed variations, mapping methods that fit the data more closely also tend to agree more closely with each other in regional averages. Encouragingly, this includes mapping methods belonging to complementary types – taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea–air CO2 flux of 0.31 PgC yr−1 (standard deviation over 1992–2009), which is larger than simulated by biogeochemical process models. From a decadal perspective, the global ocean CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to that. The weighted mean net global ocean CO2 sink estimated by the SOCOM ensemble is −1.75 PgC yr−1 (1992–2009), consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends.


2015 ◽  
Vol 12 (16) ◽  
pp. 14049-14104 ◽  
Author(s):  
C. Rödenbeck ◽  
D. C. E. Bakker ◽  
N. Gruber ◽  
Y. Iida ◽  
A. R. Jacobson ◽  
...  

Abstract. Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea–air CO2 fluxes have been investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the Eastern equatorial Pacific. Despite considerable spead in the detailed variations, mapping methods with closer match to the data also tend to be more consistent with each other. Encouragingly, this includes mapping methods belonging to complementary types – taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea–air CO2 flux of 0.31 PgC yr−1 (standard deviation over 1992–2009), which is larger than simulated by biogeochemical process models. On a decadal perspective, the global CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to 2000. The weighted mean total ocean CO2 sink estimated by the SOCOM ensemble is consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends.


2005 ◽  
Vol 2 (1) ◽  
pp. 87-96 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea on the NW European continental shelf. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The North Sea acts as a sink for organic carbon and thus can be characterised as a heterotrophic system. The dominant carbon sink is the final export to the North Atlantic Ocean. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


2018 ◽  
Author(s):  
Anna Denvil-Sommer ◽  
Marion Gehlen ◽  
Mathieu Vrac ◽  
Carlos Mejia

Abstract. A new Feed-Forward Neural Network (FFNN) model is presented to reconstruct surface ocean partial pressure of carbon dioxide (pCO2) over the global ocean. The model consists of two steps: (1) reconstruction of pCO2 climatology and (2) reconstruction of pCO2 anomalies with respect to the climatology. For the first step, a gridded climatology was used as the target, along with sea surface salinity and temperature (SSS and SST), sea surface height (SSH), chlorophyll a (Chl), mixed layer depth (MLD), as well as latitude and longitude as predictors. For the second step, data from the Surface Ocean CO2 Atlas (SOCAT) provided the target. The same set of predictors was used during step 2 augmented by their anomalies. During each step, the FFNN model reconstructs the non-linear relations between pCO2 and the ocean predictors. It provides monthly surface ocean pCO2 distributions on a 1º x 1º grid for the period 2001–2016. Global ocean pCO2 was reconstructed with a satisfying accuracy compared to independent observational data from SOCAT. However, errors are larger in regions with poor data coverage (e.g. Indian Ocean, Southern Ocean, subpolar Pacific). The model captured the strong interannual variability of surface ocean pCO2 with reasonable skills over the Equatorial Pacific associated with ENSO (El Niño Southern Oscillation). Our model was compared to three pCO2 mapping methods that participated in the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative. We found a good agreement in seasonal and interannual variabilty between the models over the global ocean. However, important differences still exist at the regional scale, especially in the Southern hemisphere and in particular, the Southern Pacific and the Indian Ocean, as these regions suffer from poor data-coverage. Large regional uncertainties in reconstructed surface ocean pCO2 and sea-air CO2 fluxes have a strong influence on global estimates of CO2 fluxes and trends.


Sign in / Sign up

Export Citation Format

Share Document