scholarly journals Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae

2014 ◽  
Vol 11 (17) ◽  
pp. 4615-4626 ◽  
Author(s):  
C. Reyes-Nivia ◽  
G. Diaz-Pulido ◽  
S. Dove

Abstract. The susceptibility of crustose coralline algae (CCA) skeletons to dissolution is predicted to increase as oceans warm and acidify. Skeletal dissolution is caused by bioerosion from endolithic microorganisms and by chemical processes associated with undersaturation of carbonate minerals in seawater. Yet, the relative contribution of algal microborers and seawater carbonate chemistry to the dissolution of organisms that cement reefs under projected pCO2 and temperature (pCO2-T) scenarios have not been quantified. We exposed CCA skeletons (Porolithon onkodes) to four pCO2-T treatments (pre-industrial, present-day, SRES-B1 "reduced" pCO2, and SRES-A1FI "business-as-usual" pCO2 emission scenarios) under natural light cycles vs. constant dark conditions for 8 weeks. Dissolution rates of skeletons without photo-endoliths were dramatically higher (200%) than those colonized by endolithic algae across all pCO2-T scenarios. This suggests that daytime photosynthesis by microborers counteract dissolution by reduced saturation states resulting in lower net erosion rates over day–night cycles. Regardless of the presence or absence of phototrophic microborers, skeletal dissolution increased significantly under the spring A1FI "business-as-usual" scenario, confirming the CCA sensitivity to future oceans. Projected ocean acidity and temperature may significantly disturb the stability of reef frameworks cemented by CCA, but surficial substrates harbouring photosynthetic microborers will be less impacted than those without algal endoliths.

2014 ◽  
Vol 11 (2) ◽  
pp. 2993-3021 ◽  
Author(s):  
C. Reyes-Nivia ◽  
G. Diaz-Pulido ◽  
S. Dove

Abstract. The susceptibility of crustose coralline algae (CCA) skeletons to dissolution is predicted to increase as oceans warm and acidify. Skeletal dissolution is caused by bioerosion from endolithic microorganisms and by chemical processes associated with undersaturation of carbonate minerals in seawater. Yet, the relative contribution of algal microborers and seawater carbonate chemistry to the dissolution of organisms that cement reefs under projected CO2 and temperature (CO2-T) scenarios have not been quantified. We exposed CCA skeletons (Porolithon onkodes) to four CO2-T treatments (pre-industrial, present-day, SRES-B1 reduced CO2 emission scenario, SRES-A1FI business-as-usual CO2 emission scenario) under natural light cycles vs. constant dark conditions for 8 weeks. Dissolution rates of skeletons without photo-endoliths were dramatically higher (200%) than those colonized by endolithic algae across all CO2-T scenarios. This suggests that daytime photosynthesis by microborers counteract dissolution by reduced saturation states resulting in lower net erosion rates over day-night cycles. Regardless of the presence or absence of phototrophic microborers, skeletal dissolution increased significantly under the spring A1FI "business-as-usual" scenario, confirming the CCA sensitivity to future oceans. Projected ocean acidity and temperature may significantly disturb the stability of reef frameworks cemented by CCA, but surficial substrates harboring photosynthetic microborers will be less impacted than those without algal endoliths.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Alexandra Ramírez-Viaña ◽  
Guillermo Diaz-Pulido ◽  
Rocío García-Urueña

2005 ◽  
Vol 51 (1-4) ◽  
pp. 415-427 ◽  
Author(s):  
Lindsay Harrington ◽  
Katharina Fabricius ◽  
Geoff Eaglesham ◽  
Andrew Negri

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilse Valenzuela Matus ◽  
Jorge Lino Alves ◽  
Joaquim Góis ◽  
Augusto Barata da Rocha ◽  
Rui Neto ◽  
...  

Purpose The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted corals. Use additive manufacturing and silicone moulds for converting three-dimensional samples into limestone mortar with white Portland cement substrates for coral growth. Design/methodology/approach Tiles samples were designed and printed with different geometries and textures inspired by nature marine environment. Commercial coral frag tiles were analysed through scanning electron microscopy (SEM) to identify the main chemical elements. Raw materials and coral species were selected. New base substrates were manufactured and deployed into a closed-circuit aquarium to monitor the coral weekly evolution process and analyse the results obtained. Findings Experimental results provided positive statistical parameters for future implementation tests, concluding that the intensity of textured surface, interfered favourably in the coralline algae biofilm growth. The chemical composition and design of the substrates were determinant factors for successful coral propagation. Recesses and cavities mimic the natural rocks aspect and promoted the presence and interaction of other species that favour the richness of the ecosystem. Originality/value Additive manufacturing provided an innovative method of production for ecology restoration areas, allowing rapid prototyping of substrates with high complexity morphologies, a critical and fundamental attribute to guarantee coral growth and Crustose Coralline Algae. The result of this study showed the feasibility of this approach using three-dimensional printing technologies.


2013 ◽  
Vol 86 (4) ◽  
pp. 443-451 ◽  
Author(s):  
RODRIGO TORRES ◽  
PATRICIO H MANRIQUEZ ◽  
CRISTIAN DUARTE ◽  
JORGE M NAVARRO ◽  
NELSON A LAGOS ◽  
...  

2016 ◽  
Author(s):  
Merinda C. Nash ◽  
Sophie Martin ◽  
Jean-Pierre Gattuso

Abstract. Red calcareous coralline algae are thought to be among organisms the most vulnerable to ocean acidification due to the high solubility of their magnesium calcite skeleton. Although, skeletal mineralogy is proposed to change as CO2 and temperature continues rising, there is currently very little information available on the response of coralline algal carbonate mineralogy to near-future changes in pCO2 and temperature. Here we present results from a one-year controlled laboratory experiment to test mineralogical responses to pCO2 and temperature in the Mediterranean crustose coralline alga (CCA) Lithophyllum cabiochae. Our results show that Mg incorporation is mainly constrained by temperature (+1 mol% MgCO3 for an increase of 3 °C) and there was no response to pCO2. This suggests that L. cabiochae thalli have the ability to buffer calcifying medium against ocean acidification, enabling them to continue to deposit Mg-calcite with a significant mol% MgCO3 under elevated pCO2. Analyses of CCA dissolution chips showed a decrease in Mg content after 1 year for all treatments but this was not affected by pCO2 nor by temperature. Our findings suggest that biological processes exert a strong control on calcification on Mg-calcite and that CCA may be more resilient under rising CO2 than previously thought. However, previously demonstrated increased skeletal dissolution with ocean acidification will still have major consequences for the stability and maintenance of Mediterranean coralligenous habitats.


2021 ◽  
Vol 8 ◽  
Author(s):  
Christina Bonsell ◽  
Kenneth H. Dunton

We examined the patterns of propagule recruitment to assess the timescale and trajectory of succession and the possible roles of physical factors in controlling benthic community structure in a shallow High Arctic kelp bed in the Beaufort Sea, Alaska. Spatial differences in established epilithic assemblages were evaluated against static habitat attributes (depth, distance from river inputs) and environmental factors (temperature, salinity, current speed, underwater light) collected continuously over 2–6 years. Our measurements revealed that bottom waters remained below freezing (mean winter temperatures ∼−1.8°C) and saline (33–36) with negligible light levels for 8–9 months. In contrast, the summer open water period was characterized by variable salinities (22–36), higher temperatures (up to 8–9°C) and measurable irradiance (1–8 mol photons m–2 day–1). An inshore, near-river site experienced strong, acute, springtime drops in salinity to nearly 0 in some years. The epilithic community was dominated by foliose red algae (47–79%), prostrate kelps (2–19%), and crustose coralline algae (0–19%). Strong spatial distinctions among sites included a positive correlation between cover by crustose coralline algae and distance to river inputs, but we found no significant relationships between multi-year means of physical factors and functional groups. Low rates of colonization and the very slow growth rates of recruits are the main factors that contribute to prolonged community development, which augments the influence of low-frequency physical events over local community structure. Mortality during early succession largely determines crustose coralline algal and invertebrate prevalence in the established community, while kelp seem to be recruitment-limited. On scales > 1 m, community structure varies with bathymetry and exposure to freshwater intrusion, which regulate frequency of primary and physiological disturbance. Colonization rates (means of 3.3–69.9 ind. 100 cm–1 year–1 site–1) were much lower than studies in other Arctic kelp habitats, and likely reflect the nature of a truly High Arctic environment. Our results suggest that community development in the nearshore Beaufort Sea occurs over decades, and is affected by combinations of recruitment limitation, primary disturbance, and abiotic stressors. While seasonality exerts strong influence on Arctic systems, static habitat characteristics largely determine benthic ecosystem structure by integrating seasonal and interannual variability over timescales longer than most ecological studies.


2021 ◽  
Author(s):  
Mari E. Deinhart ◽  
Matthew S. Mills ◽  
Tom Schils

AbstractSuccessful recruitment of invertebrate larvae to reef substrates is essential to the health of tropical coral reef ecosystems and their capacity to recover from disturbances. Crustose calcifying red algae (CCRA) have been identified as important recruitment substrates for scleractinian corals. As such, CCRA as a whole or subgroups (e.g., crustose coralline algae, CCA) are often used at the functional group level in experimental, ecological, and monitoring studies. Species of CCRA, however, differ in their ecological roles and their value as coral recruitment substrates. Here, we (1) investigate the species richness and community composition of CCRA on experimental coral recruitment tiles, and (2) assess if there is a recruitment preference of the coral Acropora surculosa for any of these CCRA species. 27 species of two orders of CCRA (Corallinales and Peyssonneliales) were identified from the recruit tiles. None of the DNA sequences of these species matched released sequences in GenBank or sequences of CCRA collected from natural reef systems in Guam. The similarity in CCRA communities between the recruitment tiles was high. Two species of CCRA were significantly preferred as recruitment substrates over the other CCRA species. Both of these species belonged to the subfamily of the Lithophylloideae. These two species are closely related to Pacific species that have been referred to as Titanoderma -but probably have to be assigned to another genus- and many of the latter have been attributed to be preferred coral recruitment substrates. Of all CCRA, Lithophylloideae sp. 1 had the highest benthic cover on the recruitment tiles and was the most preferred recruitment substrate. These findings highlight the high taxonomic diversity of CCRA communities and provide insight into species-specific ecological roles of CCRA that are often overlooked.


Sign in / Sign up

Export Citation Format

Share Document