scholarly journals Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

2016 ◽  
Vol 13 (4) ◽  
pp. 1255-1268 ◽  
Author(s):  
Saara E. Lind ◽  
Narasinha J. Shurpali ◽  
Olli Peltola ◽  
Ivan Mammarella ◽  
Niina Hyvönen ◽  
...  

Abstract. One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha−1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was −262 and −256 g C m−2 in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was −575 g C m−2. Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.

2015 ◽  
Vol 12 (20) ◽  
pp. 16673-16708 ◽  
Author(s):  
S. E. Lind ◽  
N. J. Shurpali ◽  
O. Peltola ◽  
I. Mammarella ◽  
N. Hyvönen ◽  
...  

Abstract. One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha−1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was −262 and −256 g C m−2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was −575 g C m−2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.


2010 ◽  
Vol 7 (4) ◽  
pp. 1207-1221 ◽  
Author(s):  
L. Zhao ◽  
J. Li ◽  
S. Xu ◽  
H. Zhou ◽  
Y. Li ◽  
...  

Abstract. Alpine wetland meadow could functions as a carbon sink due to it high soil organic content and low decomposition. However, the magnitude and dynamics of carbon stock in alpine wetland ecosystems are not well quantified. Therefore, understanding how environmental variables affect the processes that regulate carbon fluxes in alpine wetland meadow on the Qinghai-Tibetan Plateau is critical. To address this issue, Gross Primary Production (GPP), Ecosystem Respiration (Reco), and Net Ecosystem Exchange (NEE) were examined in an alpine wetland meadow using the eddy covariance method from October 2003 to December 2006 at the Haibei Research Station of the Chinese Academy of Sciences. Seasonal patterns of GPP and Reco were closely associated with leaf area index (LAI). The Reco showed a positive exponential to soil temperature and relatively low Reco occurred during the non-growing season after a rain event. This result is inconsistent with the result observed in alpine shrubland meadow. In total, annual GPP were estimated at 575.7, 682.9, and 630.97 g C m−2 in 2004, 2005, and 2006, respectively. Meanwhile, the Reco were equal to 676.8, 726.4, 808.2 g C m−2, and thus the NEE were 101.1, 44.0 and 173.2 g C m−2. These results indicated that the alpine wetland meadow was a moderately source of carbon dioxide (CO2). The observed carbon dioxide fluxes in the alpine wetland meadow were higher than other alpine meadow such as Kobresia humilis meadow and shrubland meadow.


2018 ◽  
Author(s):  
Alexandre A. Renchon ◽  
Anne Griebel ◽  
Christopher A. Williams ◽  
Belinda Medlyn ◽  
Remko A. Duursma ◽  
...  

Abstract. Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem-atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate is characterized by a mean annual precipitation of 800 mm and a mean annual temperature of 18 °C, hot summers and mild winters, with highly variable precipitation. In the three-year study, the ecosystem was a small sink in 2014 (54 g C m−2 y−1), a stronger sink in 2015 (183 g C m−2 y−1) and even stronger sink in 2016 (337 g C m−2 y−1), but these variations were not related to precipitation. Daily net C uptake was always detected during the cooler, drier winter months (June through August), while net C loss occurred during the warmer, wetter summer months (December through February). Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted surface conductance during summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP during ideal environmental conditions was correlated with canopy leaf area index (LAI) (r2 = 0.24), which increased rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of NEE. Because summer carbon uptake may become increasingly limited by atmospheric drought and high temperature, and ecosystem respiration could be enhanced by rising temperature, our results suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate change.


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


2018 ◽  
Vol 15 (12) ◽  
pp. 3703-3716 ◽  
Author(s):  
Alexandre A. Renchon ◽  
Anne Griebel ◽  
Daniel Metzen ◽  
Christopher A. Williams ◽  
Belinda Medlyn ◽  
...  

Abstract. Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate is characterised by a mean annual precipitation of 800 mm and a mean annual temperature of 18 ∘C, hot summers and mild winters, with highly variable precipitation. In the 4-year study, the ecosystem was a sink each year (−225 g C m−2 yr−1 on average, with a standard deviation of 108 g C m−2 yr−1); inter-annual variations were not related to meteorological conditions. Daily net C uptake was always detected during the cooler, drier winter months (June through August), while net C loss occurred during the warmer, wetter summer months (December through February). Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted surface conductance during summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP during ideal environmental conditions was significantly correlated with remotely sensed enhanced vegetation index (EVI; r2 = 0.46) and with canopy leaf area index (LAI; r2 = 0.29), which increased rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of NEE. Because summer carbon uptake may become increasingly limited by atmospheric demand and high temperature, and because ecosystem respiration could be enhanced by rising temperatures, our results suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate change.


2009 ◽  
Vol 6 (5) ◽  
pp. 9005-9044 ◽  
Author(s):  
L. Zhao ◽  
J. Li ◽  
S. Xu ◽  
H. Zhou ◽  
Y. Li ◽  
...  

Abstract. The unique climate of the alpine wetland meadow is characterized by long cold winters and short cool summers with relatively high precipitation. These factors shorten the growing season for vegetation to approximately 150 to 165 days and prolong the dormant period to almost 7 months. Understanding how environmental variables affect the processes that regulate carbon flux in alpine wetland meadow on the Qinghai-Tibetan plateau is critical important because alpine wetland meadow plays a key role in the carbon cycle of the entire plateau. To address this issue, Gross Primary Production (GPP), Ecosystem Respiration (Reco), and Net Ecosystem CO2 Exchange (NEE) were examined for an alpine wetland meadow at the Haibei Research Station of the Chinese Academy of Sciences. The measurements covered three years and were made using the eddy covariance method. Seasonal trends of both GPP and Reco, followed closely changes in Leaf Area Index (LAI). Reco, exhibited the same exponential variation as soil temperature with seasonally-dependent R10 (the ecosystem respiration rate (μmol CO2 m−2 s−1) at the soil temperature reach 283.16 K (10°C)). Yearly average GPP, Reco, and NEE (which were 575.7, 676.8 and 101.1 gCm−2, respectively, for 2004 year, and 682.9, 726.4 and 44.0 gCm−2 for 2005 year, and 630.97, 808.2 and 173.2 gCm−2 for 2006 year) values indicated that the alpine wetland meadow was a moderately important source of CO2. The observed carbon dioxide fluxes in this alpine wetland meadow plateau are high in comparison with other alpine meadow environments such as Kobresia humilis meadow and shrubland meadow located in similar areas. And the cumulative NEE data indicated that the alpine wetland meadow is a source of atmospheric CO2 during the study years. CO2 emissions are large on elevated microclimatology areas on the meadow floor regardless of temperature. Furthermore, relatively low Reco, levels occurred during the non-growing season after a late rain event. This result is contradicted observations in alpine shrubland meadow. The timing of rain events had more impact on ecosystem GPP and NEE.


2014 ◽  
Vol 11 (3) ◽  
pp. 5089-5122 ◽  
Author(s):  
X. Jia ◽  
T. S. Zha ◽  
B. Wu ◽  
Y. Q. Zhang ◽  
J. N. Gong ◽  
...  

Abstract. The carbon (C) cycling in semiarid and arid areas remains largely unexplored, despite the wide distribution of drylands globally. Rehabilitation practices have been carried out in many desertified areas, but information on the C sequestration potential of recovering vegetation is still largely lacking. Using the eddy-covariance technique, we measured the net ecosystem CO2 exchange (NEE) over a recovering shrub ecosystem in northwest China throughout 2012 in order to (1) quantify NEE and its components, (2) examine the dependence of C fluxes on biophysical factors at multiple timescales. The annual budget showed a gross ecosystem productivity (GEP) of 456 ± 8 g C m−2 yr−1 and an ecosystem respiration (Re) of 379 ± 3 g C m−2 yr−1, resulting in a net C sink of 77 ± 7 g C m−2 yr−1. The maximum daily NEE, GEP and Re were −4.7, 6.8 and 3.3 g C m−2 day−1, respectively. Both the maximum C assimilation rate (i.e., at optimum light intensity) and the quantum yield varied strongly over the growing season, being higher in summer and lower in spring and autumn. At the half-hourly scale, water stress exerted a major control over daytime NEE, and interacted with heat stress and photoinhibition in constraining C fixation by the vegetation. Low soil moisture also reduced the temperature sensitivity of Re (Q10). At the synoptic scale, rain events triggered immediate pulses of C release from the ecosystem, followed by peaks of CO2 uptake 1–2 days later. Over the entire growing season, leaf area index accounted for 45 and 65% of the seasonal variation in NEE and GEP, respectively. There was a linear dependence of daily Re on GEP, with a slope of 0.34. These results highlight the role of abiotic stresses and their alleviation in regulating C cycling in the face of an increasing frequency and intensity of extreme climatic events.


2009 ◽  
Vol 6 (6) ◽  
pp. 10279-10309 ◽  
Author(s):  
H. Kwon ◽  
J. Kim ◽  
J. Hong

Abstract. Considering the feedback loops in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on net ecosystem CO2 exchange can be critical to the estimation of carbon balance in Asia. In this paper, we examined the eddy covariance CO2 fluxes observed from 2004 to 2008 in two major plant functional types in KoFlux, i.e., the Gwangneung deciduous forest (GDK) site and the Haenam farmland (HFK) site. The objectives of the study were to (1) quantify the net ecosystem CO2 exchange (NEE), ecosystem respiration (RE), and gross primary production (GPP), (2) examine their interannual patterns, and (3) assess the mechanism for the coupling of carbon and water exchange associated with the summer monsoon. The GDK site, which had a maximum leaf area index (LAI) of ~5, was on average a relatively weak carbon sink with NEE of −84 gC m−2 y−1, RE of 1028 gC m−2 y−1, and GPP of 1113 gC m−2 y−1. Despite about 20% larger GPP (of 1321 gC m−2 y−1) in comparison with the GDK site, the HFK site (with the maximum LAI of 3 to 4) was a weaker carbon sink with NEE of −58 gC m−2 y−1 because of greater RE of 1263 gC m−2 y−1. In both sites, the annual patterns of NEE and GPP had a striking "mid-season depression" each year with two distinctive peaks of different timing and magnitude, whereas RE did not. The mid-season depression at the GDK site occurred typically from early June to late August, coinciding with the season of summer monsoon when the solar radiation decreased substantially due to frequent rainfalls and cloudiness. At the HFK site, the mid-season depression began earlier in May and continued until the end of July due to land use management (e.g., crop rotation) in addition to such disturbances as summer monsoon and typhoons. Other flux observation sites in East Asia also show a decline in radiation but with a lesser degree during the monsoon season, resulting in less pronounced depression in NEE. In our study, however, the observed depression in NEE changed the forest and farmland from a carbon sink to a source in the middle of the growing season. Consequently, the annually integrated values of NEE lies on the low end of the range reported in the literature. Such a delicate coupling between carbon and water cycles may turn these ecosystems into a stronger carbon sink with the projected trends of less frequent but more intensive rainfalls in this region.


1978 ◽  
Vol 29 (1) ◽  
pp. 51 ◽  
Author(s):  
S Fukai ◽  
JH Silsbury

A simple deterministic model to simulate the time course of potential dry matter growth by subterranean clover swards in the field is described. Relationships used in the model were obtained mainly from experiments in temperature-controlled glasshouses and from measurements of rate of carbon dioxide exchange in an assimilation chamber. Canopy carbon dioxide exchange rates in the light and in the dark are calculated in the model from leaf area index, total dry matter, air temperature, irradiance and the crop growth rate of the sward. Photosynthates are distributed among different parts of plants according to empirical relationships. The model can estimate the potential dry matter growth of swards grown at different levels of irradiance and at different temperatures. Dry matter yield of a crop growing in the field without limitation of water and mineral nutrients can be predicted to within 20% for 100 days of growth. Potential dry matter yield of pure subterranean clover swards at Adelaide is predicted by the model to be strongly influenced by the time of cessation of growth. If the growth is terminated in the middle of October, an early start to growth as well as a high plant density will be advantageous for a high final yield. On the one hand, if the growing season extends until late November, there will be only a small effect of time of commencement of growth on final yield. The model suggests that leaf area index is an important determinant of dry matter production up to about 200 g m-2, and that increased maintenance respiration at a dry matter yield above about 600 g m-2 results in a decreased growth rate. The effects of variation in irradiance and temperature on dry matter production at different growth stages are assessed. It is concluded from use of the model that the effects of temperature on crop growth rate depend on the amount of dry matter present and on the level of solar radiation.


Sign in / Sign up

Export Citation Format

Share Document