scholarly journals Box-modelling of the impacts of atmospheric nitrogen deposition and benthic remineralisation on the nitrogen cycle of the eastern tropical South Pacific

2016 ◽  
Vol 13 (17) ◽  
pp. 4985-5001
Author(s):  
Bei Su ◽  
Markus Pahlow ◽  
Andreas Oschlies

Abstract. Both atmospheric deposition and benthic remineralisation influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations in the eastern tropical South Pacific (ETSP) among nitrogen deposition, benthic denitrification and phosphorus regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. Atmospheric nitrogen deposition ( ≈ 1.5 Tg N yr−1 for the years 2000–2009) is offset by half in the model by reduced N2 fixation, with the other half transported out of the model domain. Model- and data-based benthic denitrification in our model domain are responsible for losses of 0.19 and 1.0 Tg Tg N yr−1, respectively, and both trigger nitrogen fixation, partly compensating for the NO3− loss. Model- and data-based estimates of enhanced phosphate release via sedimentary phosphorus regeneration under suboxic conditions are 0.062 and 0.11 Tg N yr−1, respectively. Since phosphate is the ultimate limiting nutrient in the model, even very small additional phosphate inputs stimulate primary production and subsequent export production and NO3− loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralisation indicates dominant stabilising feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory; i.e. nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3− loss via benthic denitrification is partly compensated for by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly counteracted by stronger water-column denitrification. Even though the water column in our model domain acts as a NO3− source, the ETSP including benthic denitrification might be a NO3− sink.

2015 ◽  
Vol 12 (17) ◽  
pp. 14441-14479
Author(s):  
B. Su ◽  
M. Pahlow ◽  
A. Oschlies

Abstract. Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP) to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000–2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3− loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3− loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3− loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3− source, the ETSP including benthic denitrification might become a NO3− sink.


2002 ◽  
Vol 80 (7) ◽  
pp. 721-731 ◽  
Author(s):  
Allison R Aldous

Sphagnum mosses are assumed to be effective at acquiring low amounts of nitrogen (N) in precipitation to support annual growth. However, N concentrations in precipitation have increased from anthropogenic sources over the last 150 years. I hypothesized that N retention from wet atmospheric deposition decreases with increased N availability, by comparing Sphagnum mosses in a high N deposition region in the Adirondack Park, New York, to a low-deposition region in eastern Maine. A 15NH415NO3 tracer was applied to mosses in both regions, and retention after 24 h was estimated. Nitrogen retention ranged from 50 to 90% of N applied. Most 15N was recovered from the apical capitula and upper stems. Nitrogen retention was greater in the Maine sites in 1998. However, in 1999, a drought year, particularly in Maine, N retention was less in Maine than in New York. The drier climate appeared to lower N retention, possibly through its physiological effects on the mosses. Although atmospheric deposition might be the only exogenous source of N, it satisfied only a small fraction of N required for annual growth. These data suggest that internal cycling processes, such as mineralization, may be much more important N sources to support Sphagnum growth.Key words: Sphagnum mosses, atmospheric nitrogen deposition, nitrogen-use efficiency, nitrogen retention, peatlands, bogs, drought.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Junbao Yu ◽  
Kai Ning ◽  
Yunzhao Li ◽  
Siyao Du ◽  
Guangxuan Han ◽  
...  

The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed thatSO42-and Na+were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area,NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition wasNH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition ofNO3-–N andNH4+–N was ~31.38% and ~20.50% for the contents ofNO3-–N andNH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.


Nitrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 308-320
Author(s):  
D. Nayeli Martínez ◽  
Edison A. Díaz-Álvarez ◽  
Erick de la Barrera

Environmental pollution is a major threat to public health and is the cause of important economic losses worldwide. Atmospheric nitrogen deposition is one of the most significant components of environmental pollution, which, in addition to being a health risk, is one of the leading drivers of global biodiversity loss. However, monitoring pollution is not possible in many regions of the world because the instrumentation, deployment, operation, and maintenance of automated systems is onerous. An affordable alternative is the use of biomonitors, naturally occurring or transplanted organisms that respond to environmental pollution with a consistent and measurable ecophysiological response. This policy brief advocates for the use of biomonitors of atmospheric nitrogen deposition. Descriptions of the biological and monitoring particularities of commonly utilized biomonitor lichens, bryophytes, vascular epiphytes, herbs, and woody plants, are followed by a discussion of the principal ecophysiological parameters that have been shown to respond to the different nitrogen emissions and their rate of deposition.


2006 ◽  
Vol 12 (3) ◽  
pp. 470-476 ◽  
Author(s):  
GARETH K. PHOENIX ◽  
W. KEVIN HICKS ◽  
STEVE CINDERBY ◽  
JOHAN C. I. KUYLENSTIERNA ◽  
WILLIAM D. STOCK ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document