scholarly journals Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model

2020 ◽  
Vol 17 (22) ◽  
pp. 5861-5882
Author(s):  
Yonghong Yi ◽  
John S. Kimball ◽  
Jennifer D. Watts ◽  
Susan M. Natali ◽  
Donatella Zona ◽  
...  

Abstract. The contribution of soil heterotrophic respiration to the boreal–Arctic carbon (CO2) cycle and its potential feedback to climate change remains poorly quantified. We developed a remote-sensing-driven permafrost carbon model at intermediate scale (∼1 km) to investigate how environmental factors affect the magnitude and seasonality of soil heterotrophic respiration in Alaska. The permafrost carbon model simulates snow and soil thermal dynamics and accounts for vertical soil carbon transport and decomposition at depths up to 3 m below the surface. Model outputs include soil temperature profiles and carbon fluxes at 1 km resolution spanning the recent satellite era (2001–2017) across Alaska. Comparisons with eddy covariance tower measurements show that the model captures the seasonality of carbon fluxes, with favorable accuracy in simulating net ecosystem CO2 exchange (NEE) for both tundra (R>0.8, root mean square error (RMSE – 0.34 g C m−2 d−1), and boreal forest (R>0.73; RMSE – 0.51 g C m−2 d−1). Benchmark assessments using two regional in situ data sets indicate that the model captures the complex influence of snow insulation on soil temperature and the temperature sensitivity of cold-season soil heterotrophic respiration. Across Alaska, we find that seasonal snow cover imposes strong controls on the contribution from different soil depths to total soil heterotrophic respiration. Earlier snowmelt in spring promotes deeper soil warming and enhances the contribution of deeper soils to total soil heterotrophic respiration during the later growing season, thereby reducing net ecosystem carbon uptake. Early cold-season soil heterotrophic respiration is closely linked to the number of snow-free days after the land surface freezes (R=-0.48, p<0.1), i.e., the delay in snow onset relative to surface freeze onset. Recent trends toward earlier autumn snow onset in northern Alaska promote a longer zero-curtain period and enhanced cold-season respiration. In contrast, southwestern Alaska shows a strong reduction in the number of snow-free days after land surface freeze onset, leading to earlier soil freezing and a large reduction in cold-season soil heterotrophic respiration. Our results also show nonnegligible influences of subgrid variability in surface conditions on the model-simulated CO2 seasonal cycle, especially during the early cold season at 10 km scale. Our results demonstrate the critical role of snow cover affecting the seasonality of soil temperature and respiration and highlight the challenges of incorporating these complex processes into future projections of the boreal–Arctic carbon cycle.

2020 ◽  
Author(s):  
Yonghong Yi ◽  
John S. Kimball ◽  
Jennifer D. Watts ◽  
Susan M. Natali ◽  
Donatella Zona ◽  
...  

Abstract. The contribution of soil heterotrophic respiration to the boreal-Arctic carbon (CO2) cycle and its potential feedback to climate change remain poorly quantified. We developed a remote sensing driven permafrost carbon model at intermediate scale (~ 1 km) to investigate how environmental factors affect the magnitude and seasonality of soil heterotrophic respiration in Alaska. The permafrost carbon model simulates snow and soil thermal dynamics, and accounts for vertical soil carbon transport and decomposition at depths up to 3 m below surface. Model outputs include soil temperature profiles and carbon fluxes at 1-km resolution spanning the recent satellite era (2001–2017) across Alaska. Comparisons with eddy covariance tower measurements show that the model captures the seasonality of carbon fluxes, with favorable accuracy in predicting net ecosystem CO2 exchange (NEE) in both tundra (R > 0.8, RMSE = 0.34 g C m−2 d−1) and boreal forest (R > 0.73, RMSE = 0.51 g C m−2 d−1). Benchmark assessments using two regional in-situ datasets indicate that the model captures the complex influence of snow insulation on soil temperature, and the temperature sensitivity of cold-season soil respiration. Across Alaska, we find that seasonal snow cover imposes strong controls on the contribution from different soil depths to total soil carbon emissions. Earlier snow melt in spring promotes deeper soil warming and enhances the contribution of deeper soils to total soil respiration during the later growing season, thereby reducing net ecosystem carbon uptake. Early cold-season soil respiration is closely linked to the number of snow-free days after land surface freezes (R = −0.48, p 


2021 ◽  
Vol 14 (3) ◽  
pp. 1753-1771
Author(s):  
Xiangfei Li ◽  
Tonghua Wu ◽  
Xiaodong Wu ◽  
Jie Chen ◽  
Xiaofan Zhu ◽  
...  

Abstract. Extensive and rigorous model intercomparison is of great importance before model application due to the uncertainties in current land surface models (LSMs). Without considering the uncertainties in forcing data and model parameters, this study designed an ensemble of 55 296 experiments to evaluate the Noah LSM with multi-parameterization (Noah-MP) for snow cover events (SCEs), soil temperature (ST) and soil liquid water (SLW) simulation, and investigated the sensitivity of parameterization schemes at a typical permafrost site on the Qinghai–Tibet Plateau (QTP). The results showed that Noah-MP systematically overestimates snow cover, which could be greatly resolved when adopting the sublimation from wind and a semi-implicit snow/soil temperature time scheme. As a result of the overestimated snow, Noah-MP generally underestimates ST, which is mostly influenced by the snow process. A systematic cold bias and large uncertainties in soil temperature remain after eliminating the effects of snow, particularly in the deep layers and during the cold season. The combination of roughness length for heat and under-canopy (below-canopy) aerodynamic resistance contributes to resolving the cold bias in soil temperature. In addition, Noah-MP generally underestimates top SLW. The runoff and groundwater (RUN) process dominates the SLW simulation in comparison to the very limited impacts of all other physical processes. The analysis of the model structural uncertainties and characteristics of each scheme would be constructive to a better understanding of the land surface processes in the permafrost regions of the QTP as well as to further model improvements towards soil hydrothermal regime modeling using LSMs.


2020 ◽  
Author(s):  
Xiangfei Li ◽  
Tonghua Wu ◽  
Xiaodong Wu ◽  
Xiaofan Zhu ◽  
Guojie Hu ◽  
...  

Abstract. Land surface models (LSMs) are effective tools for near-surface permafrost modeling. Extensive and rigorous model inter-comparison is of great importance before application due to the uncertainties in current LSMs. This study designed an ensemble of 6912 experiments to evaluate the Noah land surface model with multi-parameterization (Noah-MP) for soil temperature (ST) simulation, and investigate the sensitivity of parameterization schemes at a typical permafrost site on the Qinghai-Tibet Plateau. The results showed that Noah-MP generally underestimates ST, especially that during the cold season. In addition, the simulation uncertainty is greater in the cold season (October-April) and for the deep soil layers. ST is most sensitive to surface layer drag coefficient (SFC) while largely influenced by runoff and groundwater (RUN). By contrast, the influence of canopy stomatal resistance (CRS) and soil moisture factor for stomatal resistance (BTR) on ST is negligible. With limited impacts on ST simulation, vegetation model (VEG), canopy gap for radiation transfer (RAD) and snow/soil temperature time scheme (STC) are more influential on shallow ST, while super-cooled liquid water (FRZ), frozen soil permeability (INF) and lower boundary of soil temperature (TBOT) have greater impacts on deep ST. Furthermore, an optimal configuration of Noah-MP for permafrost modeling were extracted based on the connectivity between schemes, and they are: table leaf area index with calculated vegetation fraction, Jarvis scheme for CRS, Noah scheme for BTR, BATS model for RUN, Chen97 for SFC, zero canopy gap for RAD, variant freezing-point depression for FRZ, hydraulic parameters defined by soil moisture for INF, ST at 8 m for TBOT, and semi-implicit method for STC. The analysis of the model structural uncertainties and characteristics of each scheme would be constructive to a better understanding of the land surface processes on the QTP and further model improvements towards near-surface permafrost modeling using the LSMs.


2016 ◽  
Vol 13 (23) ◽  
pp. 6363-6383 ◽  
Author(s):  
Cathy M. Trudinger ◽  
Vanessa Haverd ◽  
Peter R. Briggs ◽  
Josep G. Canadell

Abstract. Recent studies have shown that semi-arid ecosystems in Australia may be responsible for a significant part of the interannual variability in the global concentration of atmospheric carbon dioxide. Here we use a multiple constraints approach to calibrate a land surface model of Australian terrestrial carbon and water cycles, with a focus on interannual variability. We use observations of carbon and water fluxes at 14 OzFlux sites, as well as data on carbon pools, litterfall and streamflow. We include calibration of the function describing the response of heterotrophic respiration to soil moisture. We also explore the effect on modelled interannual variability of parameter equifinality, whereby multiple combinations of parameters can give an equally acceptable fit to the calibration data. We estimate interannual variability of Australian net ecosystem production (NEP) of 0.12–0.21 PgC yr−1 (1σ) over 1982–2013, with a high anomaly of 0.43–0.67 PgC yr−1 in 2011 relative to this period associated with exceptionally wet conditions following a prolonged drought. The ranges are due to the effect on calculated NEP anomaly of parameter equifinality, with similar contributions from equifinality in parameters associated with net primary production (NPP) and heterotrophic respiration. Our range of results due to parameter equifinality demonstrates how errors can be underestimated when a single parameter set is used.


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Diandong Ren

AbstractBased on a 2-layer land surface model, a rather general variational data assimilation framework for estimating model state variables is developed. The method minimizes the error of surface soil temperature predictions subject to constraints imposed by the prediction model. Retrieval experiments for soil prognostic variables are performed and the results verified against model simulated data as well as real observations for the Oklahoma Atmospheric Surface layer Instrumentation System (OASIS). The optimization scheme is robust with respect to a wide range of initial guess errors in surface soil temperature (as large as 30 K) and deep soil moisture (within the range between wilting point and saturation). When assimilating OASIS data, the scheme can reduce the initial guess error by more than 90%, while for Observing Simulation System Experiments (OSSEs), the initial guess error is usually reduced by over four orders of magnitude.Using synthetic data, the robustness of the retrieval scheme as related to information content of the data and the physical meaning of the adjoint variables and their use in sensitivity studies are investigated. Through sensitivity analysis, it is confirmed that the vegetation coverage and growth condition determine whether or not the optimally estimated initial soil moisture condition leads to an optimal estimation of the surface fluxes. This reconciles two recent studies.With the real data experiments, it is shown that observations during the daytime period are the most effective for the retrieval. Longer assimilation windows result in more accurate initial condition retrieval, underlining the importance of information quantity, especially for schemes assimilating noisy observations.


2014 ◽  
Vol 15 (2) ◽  
pp. 631-649 ◽  
Author(s):  
Claire Magand ◽  
Agnès Ducharne ◽  
Nicolas Le Moine ◽  
Simon Gascoin

Abstract The Durance watershed (14 000 km2), located in the French Alps, generates 10% of French hydropower and provides drinking water to 3 million people. The Catchment land surface model (CLSM), a distributed land surface model (LSM) with a multilayer, physically based snow model, has been applied in the upstream part of this watershed, where snowfall accounts for 50% of the precipitation. The CLSM subdivides the upper Durance watershed, where elevations range from 800 to 4000 m within 3580 km2, into elementary catchments with an average area of 500 km2. The authors first show the difference between the dynamics of the accumulation and ablation of the snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) images and snow-depth measurements. The extent of snow cover increases faster during accumulation than during ablation because melting occurs at preferential locations. This difference corresponds to the presence of a hysteresis in the snow-cover depletion curve of these catchments, and the CLSM was adapted by implementing such a hysteresis in the snow-cover depletion curve of the model. Different simulations were performed to assess the influence of the parameterizations on the water budget and the evolution of the extent of the snow cover. Using six gauging stations, the authors demonstrate that introducing a hysteresis in the snow-cover depletion curve improves melting dynamics. They conclude that their adaptation of the CLSM contributes to a better representation of snowpack dynamics in an LSM that enables mountainous catchments to be modeled for impact studies such as those of climate change.


2018 ◽  
Vol 10 (2) ◽  
pp. 316 ◽  
Author(s):  
Ally M. Toure ◽  
Rolf H. Reichle ◽  
Barton A. Forman ◽  
Augusto Getirana ◽  
Gabrielle J. M. De Lannoy

2009 ◽  
Vol 10 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Matthew Rodell

Abstract Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes during the snow season and, in some regions, on into the following spring.


Sign in / Sign up

Export Citation Format

Share Document