scholarly journals Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem

2021 ◽  
Vol 18 (1) ◽  
pp. 13-24
Author(s):  
Richard Wehr ◽  
Scott R. Saleska

Abstract. Canopy stomatal conductance is commonly estimated from eddy covariance measurements of the latent heat flux (LE) by inverting the Penman–Monteith equation. That method ignores eddy covariance measurements of the sensible heat flux (H) and instead calculates H implicitly as the residual of all other terms in the site energy budget. Here we show that canopy stomatal conductance is more accurately calculated from eddy covariance (EC) measurements of both H and LE using the flux–gradient equations that define conductance and underlie the Penman–Monteith equation, especially when the site energy budget fails to close due to pervasive biases in the eddy fluxes and/or the available energy. The flux–gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and is as or more accurate in all plausible scenarios. The inverted Penman–Monteith equation, on the other hand, contributes substantial biases and erroneous spatial and temporal patterns to canopy stomatal conductance, skewing its relationships with drivers such as light and vapor pressure deficit.

2020 ◽  
Author(s):  
Richard Wehr ◽  
Scott R. Saleska

Abstract. Canopy stomatal conductance (gsV) is commonly estimated from eddy covariance (EC) measurements of latent heat flux (LE) by inverting the Penman-Monteith (PM) equation. That method implicitly represents the sensible heat flux (H) as the residual of all other terms in the site energy budget – even though H is measured at least as accurately as LE at every EC site while the rest of the energy budget almost never is. We argue that gsV should instead be calculated from EC measurements of both H and LE, using the flux-gradient formulation that defines conductance and underlies the PM equation. The flux-gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and provides more accurate values of gsV for all plausible scenarios in which the measured energy budget fails to close, as is common at EC sites. The PM equation, on the other hand, contributes biases and erroneous spatial and temporal patterns to gsV, skewing its relationships with drivers such as light and vapor pressure deficit. To minimize the impact of the energy budget closure problem on the PM equation, it was previously proposed that the eddy fluxes should be corrected to close the long-term energy budget while preserving the Bowen ratio (B = H/LE). We show that such a flux correction does not fully remedy the PM equation but should produce accurate values of gsV when combined with the flux-gradient formulation.


2013 ◽  
Vol 22 (5) ◽  
pp. 603-613 ◽  
Author(s):  
Mariusz Zieliński ◽  
Krzysztof Fortuniak ◽  
Włodzimierz Pawlak ◽  
Mariusz Siedlecki

2020 ◽  
Author(s):  
Belén Martí ◽  
Daniel Martínez-Villagrasa ◽  
Joan Cuxart

<p>Turbulent flux measurements require high frequency sampling in order to characterize appropriately all the variability scales of the atmosphere. A 3D sonic anemometer coupled with a gas detector allows for applying the eddy-covariance method which has become the standard. However, the high cost of this system often implies to look for alternative methods, specially when multiple stations are required. Turbulent fluxes can also be estimated through the flux-gradient similarity theory, requiring observations of mean quantities of (at least) air temperature and humidity at two levels and wind at one height. This approach is more sensitive to the disturbing influence of heterogeneous and complex surfaces and a comparison between methodologies is required under these conditions.<br><br>The data used in this study is part of the ALaiz EXperiment 2017-2018 (ALEX17). This campaign was the last within the New European Altas project. It had a duration of over a year with measurements in complex terrain. The location of the experiment is a valley bounded by two mountain ranges that rise 150 m north and over 600 m south. A central site in the centre of the valley was instrumented with a sodar-RASS, an 80-m tower, a surface energy balance (SEB) station with an eddy-covariance system and a surface-layer station (SLS) with the necessary measurements to estimate the turbulent fluxes. In addition, eight supplementary SLS were deployed along the longitudinal and transverse valley axes to characterize the surface layer variability within the valley.<br><br>This communication will present a comparison of the friction velocity and sensible heat flux obtained from both the eddy-covariance system and the flux-gradient method at the central site for a time series of 8 months. Friction velocity is highly comparable between methodologies with a correlation of 0.92 and a standard deviation of 0.05. The performance of the sensible heat flux estimation differs between stable and unstable cases, with a correlation of 0.70 and 0.89, respectively, after applying a quality control procedure. The poorer results obtained under stable conditions points out the need for alternative estimations of the sensible heat flux for these cases.</p>


2016 ◽  
Vol 20 (2) ◽  
pp. 697-713 ◽  
Author(s):  
H. Hoffmann ◽  
H. Nieto ◽  
R. Jensen ◽  
R. Guzinski ◽  
P. Zarco-Tejada ◽  
...  

Abstract. Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.


2012 ◽  
Vol 5 (7) ◽  
pp. 1699-1717 ◽  
Author(s):  
S. Metzger ◽  
W. Junkermann ◽  
M. Mauder ◽  
F. Beyrich ◽  
K. Butterbach-Bahl ◽  
...  

Abstract. The objective of this study is to assess the feasibility and quality of eddy-covariance flux measurements from a weight-shift microlight aircraft (WSMA). Firstly, we investigate the precision of the wind measurement (σu,v ≤ 0.09 m s−1, σw = 0.04 m s−1), the lynchpin of flux calculations from aircraft. From here, the smallest resolvable changes in friction velocity (0.02 m s−1), and sensible- (5 W m−2) and latent (3 W m−2) heat flux are estimated. Secondly, a seven-day flight campaign was performed near Lindenberg (Germany). Here we compare measurements of wind, temperature, humidity and respective fluxes between a tall tower and the WSMA. The maximum likelihood functional relationship (MLFR) between tower and WSMA measurements considers the random error in the data, and shows very good agreement of the scalar averages. The MLFRs for standard deviations (SDs, 2–34%) and fluxes (17–21%) indicate higher estimates of the airborne measurements compared to the tower. Considering the 99.5% confidence intervals, the observed differences are not significant, with exception of the temperature SD. The comparison with a large-aperture scintillometer reveals lower sensible heat flux estimates at both tower (−40 to −25%) and WSMA (−25–0%). We relate the observed differences to (i) inconsistencies in the temperature and wind measurement at the tower and (ii) the measurement platforms' differing abilities to capture contributions from non-propagating eddies. These findings encourage the use of WSMA as a low cost and highly versatile flux measurement platform.


2020 ◽  
Vol 20 (12) ◽  
pp. 7179-7191 ◽  
Author(s):  
Chinmoy Sarkar ◽  
Alex B. Guenther ◽  
Jeong-Hoo Park ◽  
Roger Seco ◽  
Eliane Alves ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to their contribution to atmospheric chemistry and biogeochemical cycles. Tropical forests are the largest source of the dominant BVOC emissions (e.g. isoprene and monoterpenes). In this study, we report isoprene and total monoterpene flux measurements with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) using the eddy covariance (EC) method at the Tapajós National Forest (2.857∘ S, 54.959∘ W), a primary rainforest in eastern Amazonia. Measurements were carried out from 1 to 16 June 2014, during the wet-to-dry transition season. During the measurement period, the measured daytime (06:00–18:00 LT) average isoprene mixing ratios and fluxes were 1.15±0.60 ppb and 0.55±0.71 mg C m−2 h−1, respectively, whereas the measured daytime average total monoterpene mixing ratios and fluxes were 0.14±0.10 ppb and 0.20±0.25 mg C m−2 h−1, respectively. Midday (10:00–14:00 LT) average isoprene and total monoterpene mixing ratios were 1.70±0.49 and 0.24±0.05 ppb, respectively, whereas midday average isoprene and monoterpene fluxes were 1.24±0.68 and 0.46±0.22 mg C m−2 h−1, respectively. Isoprene and total monoterpene emissions in Tapajós were correlated with ambient temperature and solar radiation. Significant correlation with sensible heat flux, SHF (r2=0.77), was also observed. Measured isoprene and monoterpene fluxes were strongly correlated with each other (r2=0.93). The MEGAN2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) model could simulate most of the observed diurnal variations (r2=0.7 to 0.8) but declined a little later in the evening for both isoprene and total monoterpene fluxes. The results also demonstrate the importance of site-specific vegetation emission factors (EFs) for accurately simulating BVOC fluxes in regional and global BVOC emission models.


1965 ◽  
Vol 5 (42) ◽  
pp. 833-841 ◽  
Author(s):  
J.A. Businger ◽  
K. Ramana Rao

Abstract Direct measurements of the horizontal divergence of the air flow close to the snow surface have been made. The mean vertical wind component has been derived from these observations. The temperature profile has been analyzed near the center of the snow-dome and a method to determine the sensible heat flux independent from the energy budget has been developed.


Sign in / Sign up

Export Citation Format

Share Document