scholarly journals Estimating evaporation with thermal UAV data and two-source energy balance models

2016 ◽  
Vol 20 (2) ◽  
pp. 697-713 ◽  
Author(s):  
H. Hoffmann ◽  
H. Nieto ◽  
R. Jensen ◽  
R. Guzinski ◽  
P. Zarco-Tejada ◽  
...  

Abstract. Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.

2015 ◽  
Vol 12 (8) ◽  
pp. 7469-7502 ◽  
Author(s):  
H. Hoffmann ◽  
H. Nieto ◽  
R. Jensen ◽  
R. Guzinski ◽  
P. J. Zarco-Tejada ◽  
...  

Abstract. Estimating evapotranspiration is important when managing water resources and cultivating crops. Evapotranspiration can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST) which recently have become obtainable in very high resolution using Unmanned Aerial Vehicles (UAVs). Very high resolution LST can give insight into e.g. distributed crop conditions within cultivated fields. In this study evapotranspiration is estimated using LST retrieved with a UAV and the physically-based, two source energy balance models: the Priestley–Taylor TSEB (TSEB-PT) and the Dual-Temperature-Difference (DTD). A fixed-wing UAV was flown over a barley field in western Denmark during the spring and summer in 2014 and retrieved images of LST is successfully processed into thermal mosaics which serve as model input for both TSEB-PT and DTD. The aim is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to obtain high spatial and temporal resolution surface energy heat fluxes. Furthermore, this study evaluates the performance of the two source energy balance (TSEB) model scheme during cloudy and overcast weather conditions. This is feasible due to the low data retrieval altitude compared to satellite thermal data that are only available during clear skies and sunny conditions. Flux estimates from TSEB-PT and DTD are compared and validated against field data collected using an eddy covariance system located at same site at which the UAV flights were conducted. Furthermore, spatially distributed evapotranspiration patterns are evaluated using known irrigation patterns. Evapotranspiration is well estimated by both TSEB-PT and DTD with DTD as the best predictor. The DTD model provides results comparable to studies estimating evapotranspiration with satellite retrieved LST and physical land-surface models. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high resolution and consistent LST. Lastly, this study explicates thermal UAV data processing and the mosaicking of images into ortho-photos suited for model input.


2009 ◽  
Vol 44 (11) ◽  
pp. 1365-1373 ◽  
Author(s):  
Carlos Antonio Costa dos Santos ◽  
Bernardo Barbosa da Silva ◽  
Tantravahi Venkata Ramana Rao ◽  
Christopher Michael Usher Neale

The objective of this work was to evaluate the reliability of eddy covariance measurements, analyzing the energy balance components, evapotranspiration and energy balance closure in dry and wet growing seasons, in a banana orchard. The experiment was carried out at a farm located within the irrigation district of Quixeré, in the Lower Jaguaribe basin, in Ceará state, Brazil. An eddy covariance system was used to measure the turbulent flux. An automatic weather station was installed in a grass field to obtain the reference evapotranspiration (ET0) from the combined FAO-Penman-Monteith method. Wind speed and vapor pressure deficit are the most important variables on the evaporative process in both growing seasons. In the dry season, the heat fluxes have a similar order of magnitude, and during the wet season the latent heat flux is the largest. The eddy covariance system had acceptable reliability in measuring heat flux, with actual evapotranspiration results comparing well with those obtained by using the water balance method. The energy balance closure had good results for the study area, with mean values of 0.93 and 0.86 for the dry and wet growing seasons respectively.


2011 ◽  
Vol 15 (4) ◽  
pp. 1291-1306 ◽  
Author(s):  
S. M. Liu ◽  
Z. W. Xu ◽  
W. Z. Wang ◽  
Z. Z. Jia ◽  
M. J. Zhu ◽  
...  

Abstract. We analyzed the seasonal variations of energy balance components over three different surfaces: irrigated cropland (Yingke, YK), alpine meadow (A'rou, AR), and spruce forest (Guantan, GT). The energy balance components were measured using eddy covariance (EC) systems and a large aperture scintillometer (LAS) in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site and discussed the differences between the sensible heat fluxes measured with EC and LAS at AR. The results show that the main EC source areas were within a radius of 250 m at all of the sites. The main source area for the LAS (with a path length of 2390 m) stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed with the season at each site, and there were characteristic seasonal variations in the energy balance components at all of the sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the so-called energy imbalance phenomenon, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.


2015 ◽  
Vol 12 (8) ◽  
pp. 2311-2326 ◽  
Author(s):  
J. Ingwersen ◽  
K. Imukova ◽  
P. Högy ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is normally not closed. Therefore, at least if used for modelling, EC flux data are usually post-closed, i.e. the measured turbulent fluxes are adjusted so as to close the energy balance. At the current state of knowledge, however, it is not clear how to partition the missing energy in the right way. Eddy flux data therefore contain some uncertainty due to the unknown nature of the energy balance gap, which should be considered in model evaluation and the interpretation of simulation results. We propose to construct the post-closure methods uncertainty band (PUB), which essentially designates the differences between non-adjusted flux data and flux data adjusted with the three post-closure methods (Bowen ratio, latent heat flux (LE) and sensible heat flux (H) method). To demonstrate this approach, simulations with the NOAH-MP land surface model were evaluated based on EC measurements conducted at a winter wheat stand in southwest Germany in 2011, and the performance of the Jarvis and Ball–Berry stomatal resistance scheme was compared. The width of the PUB of the LE was up to 110 W m−2 (21% of net radiation). Our study shows that it is crucial to account for the uncertainty in EC flux data originating from lacking energy balance closure. Working with only a single post-closing method might result in severe misinterpretations in model–data comparisons.


2018 ◽  
Vol 22 (10) ◽  
pp. 5559-5578 ◽  
Author(s):  
Umarporn Charusombat ◽  
Ayumi Fujisaki-Manome ◽  
Andrew D. Gronewold ◽  
Brent M. Lofgren ◽  
Eric J. Anderson ◽  
...  

Abstract. Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the North American Great Lakes. These fluxes can be measured in situ using eddy covariance techniques and are regularly included as a component of lake–atmosphere models. To help ensure accurate projections of lake temperature, circulation, and regional meteorology, we validated the output of five algorithms used in three popular models to calculate surface heat fluxes: the Finite Volume Community Ocean Model (FVCOM, with three different options for heat flux algorithm), the Weather Research and Forecasting (WRF) model, and the Large Lake Thermodynamic Model. These models are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system. We isolated only the code for the heat flux algorithms from each model and drove them using meteorological data from four over-lake stations within the Great Lakes Evaporation Network (GLEN), where eddy covariance measurements were also made, enabling co-located comparison. All algorithms reasonably reproduced the seasonal cycle of the turbulent heat fluxes, but all of the algorithms except for the Coupled Ocean–Atmosphere Response Experiment (COARE) algorithm showed notable overestimation of the fluxes in fall and winter. Overall, COARE had the best agreement with eddy covariance measurements. The four algorithms other than COARE were altered by updating the parameterization of roughness length scales for air temperature and humidity to match those used in COARE, yielding improved agreement between modeled and observed sensible and latent heat fluxes.


2009 ◽  
Vol 6 (1) ◽  
pp. 1945-1978 ◽  
Author(s):  
F. Miglietta ◽  
B. Gioli ◽  
Y. Brunet ◽  
R. W. A. Hutjes ◽  
A. Matese ◽  
...  

Abstract. The CarboEurope Regional Experiment Strategy (CERES) was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG) geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discussed.


2014 ◽  
Vol 11 (12) ◽  
pp. 16911-16951
Author(s):  
J. Ingwersen ◽  
K. Imukova ◽  
P. Högy ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is normally not closed. Therefore, at least if used for modeling, EC flux data are usually post-closed, i.e. the measured turbulent fluxes are adjusted so as to close the energy balance. At the current state of knowledge, however, it is not clear how to partition the missing energy in the right way. Eddy flux data therefore contain some uncertainty due to the unknown nature of the energy balance gap, which should be considered in model evaluation and the interpretation of simulation results. We propose to construct the post-closure method uncertainty band (PUB), which essentially designates the differences between non-adjusted flux data and flux data adjusted with the three post-closure methods (Bowen ratio, latent heat flux (LE) and sensible heat flux (H) method). To demonstrate this approach, simulations with the NOAH-MP land surface model were evaluated based on EC measurements conducted at a winter wheat stand in Southwest Germany in 2011, and the performance of the Jarvis and Ball–Berry stomatal resistance scheme was compared. The width of the PUB of the LE was up to 110 W m–2 (21% of net radiation). Our study shows that it is crucial to account for the uncertainty of EC flux data originating from lacking energy balance closure. Working with only a single post-closing method might result in severe misinterpretations in model-data comparisons.


2018 ◽  
Author(s):  
Lei Zhong ◽  
Yaoming Ma ◽  
Zeyong Hu ◽  
Yunfei Fu ◽  
Yuanyuan Hu ◽  
...  

Abstract. The estimation of land surface heat fluxes has significant meaning for energy and water cycle studies, especially for the Tibetan Plateau (TP), which has unique topography and strong land–atmosphere interactions. The land surface heating status also directly influences the movement of atmospheric circulation. However, for a long time, plateau-scale land surface heat flux information with high temporal resolution has been lacking, which greatly limits understanding of diurnal variations in land–atmosphere interactions. Based on geostationary and polar orbiting satellite data, a surface energy balance system (SEBS) was used in this paper to derive hourly land surface heat fluxes with a spatial resolution of 10 km. Six stations scattered through the TP and equipped for flux tower measurements were used to correct the energy imbalance problem existing in the measurements and to perform cross-validation. The results showed good agreement between derived fluxes and in situ measurements through 3738 validation samples. The RMSEs for net radiation flux, sensible heat flux, latent heat flux and soil heat flux were 76.63 W m−2, 60.29 W m−2, 64.65 W m−2 and 37.5 W m−2, respectively. The derived results were also found to be superior to GLDAS flux products (RMSEs for the surface energy balance components were 114.32 W m−2, 67.77 W m−2, 75.6 W m−2 and 40.05 W m−2, respectively). The diurnal and seasonal cycles of land surface energy balance components were clearly identified. Their spatial distribution was found to be consistent with the heterogeneous land surface status and general hydrometeorological conditions of the TP.


2019 ◽  
Vol 19 (8) ◽  
pp. 5529-5541 ◽  
Author(s):  
Lei Zhong ◽  
Yaoming Ma ◽  
Zeyong Hu ◽  
Yunfei Fu ◽  
Yuanyuan Hu ◽  
...  

Abstract. Estimation of land surface heat fluxes is important for energy and water cycle studies, especially on the Tibetan Plateau (TP), where the topography is unique and the land–atmosphere interactions are strong. The land surface heating conditions also directly influence the movement of atmospheric circulation. However, high-temporal-resolution information on the plateau-scale land surface heat fluxes has been lacking for a long time, which significantly limits the understanding of diurnal variations in land–atmosphere interactions. Based on geostationary and polar-orbiting satellite data, the surface energy balance system (SEBS) was used in this paper to derive hourly land surface heat fluxes at a spatial resolution of 10 km. Six stations scattered throughout the TP and equipped for flux tower measurements were used to perform a cross-validation. The results showed good agreement between the derived fluxes and in situ measurements through 3738 validation samples. The root-mean-square errors (RMSEs) for net radiation flux, sensible heat flux, latent heat flux and soil heat flux were 76.63, 60.29, 71.03 and 37.5 W m−2, respectively; the derived results were also found to be superior to the Global Land Data Assimilation System (GLDAS) flux products (with RMSEs for the surface energy balance components of 114.32, 67.77, 75.6 and 40.05 W m−2, respectively). The diurnal and seasonal cycles of the land surface energy balance components were clearly identified, and their spatial distribution was found to be consistent with the heterogeneous land surface conditions and the general hydrometeorological conditions of the TP.


2009 ◽  
Vol 6 (10) ◽  
pp. 1975-1986 ◽  
Author(s):  
F. Miglietta ◽  
B. Gioli ◽  
Y. Brunet ◽  
R. W. A. Hutjes ◽  
A. Matese ◽  
...  

Abstract. The CarboEurope Regional Experiment Strategy (CERES) was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the South-Western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG) geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discussed.


Sign in / Sign up

Export Citation Format

Share Document