canopy stomatal conductance
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Juan C. Baca Cabrera ◽  
Regina T. Hirl ◽  
Rudi Schäufele ◽  
Andy Macdonald ◽  
Hans Schnyder

Abstract Background The anthropogenic increase of atmospheric CO2 concentration (ca) is impacting carbon (C), water, and nitrogen (N) cycles in grassland and other terrestrial biomes. Plant canopy stomatal conductance is a key player in these coupled cycles: it is a physiological control of vegetation water use efficiency (the ratio of C gain by photosynthesis to water loss by transpiration), and it responds to photosynthetic activity, which is influenced by vegetation N status. It is unknown if the ca-increase and climate change over the last century have already affected canopy stomatal conductance and its links with C and N processes in grassland. Results Here, we assessed two independent proxies of (growing season-integrating canopy-scale) stomatal conductance changes over the last century: trends of δ18O in cellulose (δ18Ocellulose) in archived herbage from a wide range of grassland communities on the Park Grass Experiment at Rothamsted (U.K.) and changes of the ratio of yields to the CO2 concentration gradient between the atmosphere and the leaf internal gas space (ca – ci). The two proxies correlated closely (R2 = 0.70), in agreement with the hypothesis. In addition, the sensitivity of δ18Ocellulose changes to estimated stomatal conductance changes agreed broadly with published sensitivities across a range of contemporary field and controlled environment studies, further supporting the utility of δ18Ocellulose changes for historical reconstruction of stomatal conductance changes at Park Grass. Trends of δ18Ocellulose differed strongly between plots and indicated much greater reductions of stomatal conductance in grass-rich than dicot-rich communities. Reductions of stomatal conductance were connected with reductions of yield trends, nitrogen acquisition, and nitrogen nutrition index. Although all plots were nitrogen-limited or phosphorus- and nitrogen-co-limited to different degrees, long-term reductions of stomatal conductance were largely independent of fertilizer regimes and soil pH, except for nitrogen fertilizer supply which promoted the abundance of grasses. Conclusions Our data indicate that some types of temperate grassland may have attained saturation of C sink activity more than one century ago. Increasing N fertilizer supply may not be an effective climate change mitigation strategy in many grasslands, as it promotes the expansion of grasses at the disadvantage of the more CO2 responsive forbs and N-fixing legumes.


2021 ◽  
Vol 18 (1) ◽  
pp. 13-24
Author(s):  
Richard Wehr ◽  
Scott R. Saleska

Abstract. Canopy stomatal conductance is commonly estimated from eddy covariance measurements of the latent heat flux (LE) by inverting the Penman–Monteith equation. That method ignores eddy covariance measurements of the sensible heat flux (H) and instead calculates H implicitly as the residual of all other terms in the site energy budget. Here we show that canopy stomatal conductance is more accurately calculated from eddy covariance (EC) measurements of both H and LE using the flux–gradient equations that define conductance and underlie the Penman–Monteith equation, especially when the site energy budget fails to close due to pervasive biases in the eddy fluxes and/or the available energy. The flux–gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and is as or more accurate in all plausible scenarios. The inverted Penman–Monteith equation, on the other hand, contributes substantial biases and erroneous spatial and temporal patterns to canopy stomatal conductance, skewing its relationships with drivers such as light and vapor pressure deficit.


2020 ◽  
Author(s):  
Richard Wehr ◽  
Scott R. Saleska

Abstract. Canopy stomatal conductance (gsV) is commonly estimated from eddy covariance (EC) measurements of latent heat flux (LE) by inverting the Penman-Monteith (PM) equation. That method implicitly represents the sensible heat flux (H) as the residual of all other terms in the site energy budget – even though H is measured at least as accurately as LE at every EC site while the rest of the energy budget almost never is. We argue that gsV should instead be calculated from EC measurements of both H and LE, using the flux-gradient formulation that defines conductance and underlies the PM equation. The flux-gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and provides more accurate values of gsV for all plausible scenarios in which the measured energy budget fails to close, as is common at EC sites. The PM equation, on the other hand, contributes biases and erroneous spatial and temporal patterns to gsV, skewing its relationships with drivers such as light and vapor pressure deficit. To minimize the impact of the energy budget closure problem on the PM equation, it was previously proposed that the eddy fluxes should be corrected to close the long-term energy budget while preserving the Bowen ratio (B = H/LE). We show that such a flux correction does not fully remedy the PM equation but should produce accurate values of gsV when combined with the flux-gradient formulation.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1143 ◽  
Author(s):  
Hongzhong Dang ◽  
Ping Lu ◽  
Wenbin Yang ◽  
Hui Han ◽  
Jun Zhang

Determining plant–water relationships in response to drought events can provide important information about the adaptation of trees to climate change. The Mongolian Scots pine (Pinus sylvestris var. mongolica Litv), as one of the major tree species to control soil loss and desertification in northern China, has experienced severe degradation in recent decades. Here, we aimed to examine the impacts of a two-year consecutive drought and another year of drought on the radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pine over a five-year period, especially in terms of its recovery after drought. The study period during 2013–2017 consisted of a ‘normal’ year, a ‘dry year’, a ‘very dry’ year, a ‘wet’ year, and a ‘dry’ year, according to annual precipitation and soil moisture conditions. Based on measurements of the sap flow and diameters at breast height of 11 sample trees as well as the concurrent environmental factors, we quantified the reductions in tree radial growth, transpiration, and canopy stomatal conductance during the drought development as well as their recovery after the drought. The results showed that the tree radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pines decreased by 33.8%, 51.9%, and 51.5%, respectively, due to the two consecutive years of drought. Moreover, these reductions did not fully recover after the two-year drought was relieved. The minimum difference of these parameters between before and after the two-year consecutive drought period was 8.5% in tree radial growth, 45.1% in transpiration levels, and 42.4% in canopy stomatal conductance. We concluded that the two consecutive years of drought resulted in not only large reductions in tree radial growth and water use, but also their lagged and limited recoveries after drought. The study also highlighted the limited resilience of Mongolian Scots pine trees to prolonged drought in semi-arid sandy environmental conditions.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 114 ◽  
Author(s):  
Oscar Monje ◽  
Bruce Bugbee

Canopy stomatal conductance is a key physiological factor controlling transpiration from plant canopies, but it is extremely difficult to determine in field environments. The objective of this study was to develop a radiometric method for calculating canopy stomatal conductance for two plant species—wheat and soybean from direct measurements of bulk surface conductance to water vapor and the canopy aerodynamic conductance in controlled-environment chambers. The chamber provides constant net radiation, temperature, humidity, and ventilation rate to the plant canopy. In this method, stepwise changes in chamber CO2 alter canopy temperature, latent heat, and sensible heat fluxes simultaneously. Sensible heat and the radiometric canopy-to-air temperature difference are computed from direct measurements of net radiation, canopy transpiration, photosynthesis, radiometric temperature, and air temperature. The canopy aerodynamic conductance to the transfer of water vapor is then determined from a plot of sensible heat versus radiometric canopy-to-air temperature difference. Finally, canopy stomatal conductance is calculated from canopy surface and aerodynamic conductances. The canopy aerodynamic conductance was 5.5 mol m−2 s−1 in wheat and 2.5 mol m−2 s−1 in soybean canopies. At 400 umol mol−1 of CO2 and 86 kPa atmospheric pressure, canopy stomatal conductances were 2.1 mol m−2 s−1 for wheat and 1.1 mol m−2 s−1 for soybean, comparable to canopy stomatal conductances reported in field studies. This method measures canopy aerodynamic conductance in controlled-environment chambers where the log-wind profile approximation does not apply and provides an improved technique for measuring canopy-level responses of canopy stomatal conductance and the decoupling coefficient. The method was used to determine the response of canopy stomatal conductance to increased CO2 concentration and to determine the sensitivity of canopy transpiration to changes in canopy stomatal conductance. These responses are useful for improving the prediction of ecosystem-level water fluxes in response to climatic variables.


Sign in / Sign up

Export Citation Format

Share Document