scholarly journals On the influence of erect shrubs on the irradiance profile in snow

2021 ◽  
Vol 18 (21) ◽  
pp. 5851-5869
Author(s):  
Maria Belke-Brea ◽  
Florent Domine ◽  
Ghislain Picard ◽  
Mathieu Barrere ◽  
Laurent Arnaud

Abstract. The warming-induced expansion of shrubs in the Arctic is transforming snowpacks into a mixture of snow, impurities and buried branches. Because snow is a translucent medium into which light penetrates up to tens of centimetres, buried branches may alter the snowpack radiation budget with important consequences for the snow thermal regime and microstructure. To characterize the influence of buried branches on radiative transfer in snow, irradiance profiles were measured in snowpacks with and without shrubs near Umiujaq in the Canadian Low Arctic (56.5∘ N, 76.5∘ W) in November and December 2015. Using the irradiance profiles measured in shrub-free snowpacks in combination with a Monte Carlo radiative transfer model revealed that the dominant impurity type was black carbon (BC) in variable concentrations up to 185 ng g−1. This allowed the separation of the radiative effects of impurities and buried branches. Irradiance profiles measured in snowpacks with shrubs showed that the impact of buried branches was local (i.e. a few centimetres around branches) and only observable in layers where branches were also visible in snowpit photographs. The local-effect hypothesis was further supported by observations of localized melting and depth hoar pockets that formed in the vicinity of branches. Buried branches therefore affect snowpack properties, with possible impacts on Arctic flora and fauna and on the thermal regime of permafrost. Lastly, the unexpectedly high BC concentrations in snow are likely caused by nearby open-air waste burning, suggesting that cleaner waste management plans are required for northern community and ecosystem protection.

2021 ◽  
Author(s):  
Maria Belke-Brea ◽  
Florent Domine ◽  
Ghislain Picard ◽  
Mathieu Barrere ◽  
Laurent Arnaud

Abstract. The warming-induced expansion of shrubs in the Arctic is transforming snowpacks into a mixture of snow, impurities and buried branches. Because snow is a translucent medium into which light penetrates up to tens of centimeters, buried branches may alter the snowpack radiation budget with important consequences for the snow thermal regime and microstructure. To characterize the influence of buried branches on radiative transfer in snow, irradiance profiles were measured in snowpacks with and without shrubs near Umiujaq in the Canadian Low Arctic (56.5° N, 76.5° W) in November and December 2015. Using the irradiance profiles measured in shrub-free snowpacks in combination with a Monte Carlo radiative transfer model revealed that the dominant impurity type was black carbon (BC) in variable concentrations up to 185 ng g−1. This allowed the separation of the radiative effects of impurities and buried branches. Irradiance profiles measured in snowpacks with shrubs showed that the impact of buried branches was generally weak, except for layers where branches were also visible in snowpit photographs, suggesting that branches influence snow locally (i.e. a few centimeters around branches). The local-effect hypothesis was further supported by observations of localized melting and depth hoar pockets that formed in the vicinity of branches. Buried branches therefore affect snowpack properties, with possible impacts on Arctic flora and fauna and on the thermal regime of permafrost. Lastly, the unexpectedly high BC concentrations in snow are likely caused by nearby open-air waste burning, suggesting that cleaner waste management plans are required for northern community and ecosystem protection.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


2020 ◽  
Author(s):  
Dominic Fawcett ◽  
Jonathan Bennie ◽  
Karen Anderson

<p>The light environment within vegetated landscapes is a key driver of microclimate, creating varied habitats over small spatial extents and controls the distribution of understory plant species. Modelling spatial variations of light at these scales requires finely resolved (< 1 m) information on topography and canopy properties. We demonstrate an approach to modelling spatial distributions and temporal progression of understory photosynthetically active radiation (PAR) utilising a three dimensional radiative transfer model (discrete anisotropic radiative transfer model: DART) where the scene is parameterised by drone-based data.</p><p>The study site, located in west Cornwall, UK, includes a small mixed woodland as well as isolated free-standing trees. Data were acquired from March to August 2019. Vegetation height and distribution were derived from point clouds generated from drone image data using structure-from-motion (SfM) photogrammetry. These data were supplemented by multi-temporal multispectral imagery (Parrot Sequoia camera) which were used to generate an empirical model by relating a vegetation index to plant area index derived from hemispherical photography taken over the same time period. Simulations of the 3D radiative budget were performed for the PAR wavelength interval (400 – 700 nm) using DART.</p><p>Besides maps of instantaneous above and below canopy irradiance, we provide models of daily light integrals (DLI) which are assessed against field validation measurements with PAR quantum sensors. We find relatively good agreement for simulated PAR in the woodland. The impact of simplifying assumptions regarding leaf angular distributions and optical properties are discussed. Finally, further opportunities which fine-grained drone data can provide in a radiative transfer context are highlighted.</p>


2020 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Kerstin Stebel ◽  
...  

<p>Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O<sub>2</sub>-O<sub>2</sub>) or O<sub>2</sub>A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving scattering of clouds in neighbouring pixels and cloud shadow effects. Therefore, to go one step further, other correction methods may be envisaged that use sub-pixel cloud information from co-located imagers. Such methods require an understanding of the impact of clouds on the real 3D radiative transfer. We quantify this impact using the MYSTIC 3D radiative transfer model. The generation of realistic 3D input cloud fields, needed by MYSTIC (or any other 3D radiative transfer model), is non-trivial. We use cloud data generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The model simulates realistic liquid and ice clouds with a horizontal spatial resolution of 156 m and it has been validated against ground-based and satellite-based observational data.</p><p>As a trace gas example, we study NO<sub>2</sub>, a key tropospheric trace gas measured by the atmospheric Sentinels. The MYSTIC 3D model simulates visible spectra, which are ingested in standard DOAS retrieval algorithms to retrieve the NO<sub>2</sub> column amount. Spectra are simulated for a number of realistic cloud scenarios, snow free surface albedos, and solar and satellite geometries typical of low-earth and geostationary orbits. The retrieved NO<sub>2</sub> vertical column densities (VCD) are compared with the true values to identify conditions where 3D cloud effects lead to significant biases on the NO<sub>2</sub> VCDs. A variety of possible mitigation strategies for such pixels are then explored.</p>


2007 ◽  
Vol 20 (17) ◽  
pp. 4459-4475 ◽  
Author(s):  
C. J. Stubenrauch ◽  
F. Eddounia ◽  
J. M. Edwards ◽  
A. Macke

Abstract Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.


2017 ◽  
Vol 17 (22) ◽  
pp. 13559-13572 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Loretta J. Mickley ◽  
Eric M. Leibensperger ◽  
Michael J. Iacono

Abstract. In situ surface observations show that downward surface solar radiation (SWdn) over the central and southeastern United States (US) has increased by 0.58–1.0 Wm−2 a−1 over the 2000–2014 time frame, simultaneously with reductions in US aerosol optical depth (AOD) of 3.3–5.0  ×  10−3 a−1. Establishing a link between these two trends, however, is challenging due to complex interactions between aerosols, clouds, and radiation. Here we investigate the clear-sky aerosol–radiation effects of decreasing US aerosols on SWdn and other surface variables by applying a one-dimensional radiative transfer to 2000–2014 measurements of AOD at two Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. Observations characterized as clear-sky may in fact include the effects of thin cirrus clouds, and we consider these effects by imposing satellite data from the Clouds and Earth's Radiant Energy System (CERES) into the radiative transfer model. The model predicts that 2000–2014 trends in aerosols may have driven clear-sky SWdn trends of +1.35 Wm−2 a−1 at Goodwin Creek, MS, and +0.93 Wm−2 a−1 at Bondville, IL. While these results are consistent in sign with observed trends, a cross-validated multivariate regression analysis shows that AOD reproduces 20–26 % of the seasonal (June–September, JJAS) variability in clear-sky direct and diffuse SWdn at Bondville, IL, but none of the JJAS variability at Goodwin Creek, MS. Using in situ soil and surface flux measurements from the Ameriflux network and Illinois Climate Network (ICN) together with assimilated meteorology from the North American Land Data Assimilation System (NLDAS), we find that sunnier summers tend to coincide with increased surface air temperature and soil moisture deficits in the central US. The 1990–2015 trends in the NLDAS SWdn over the central US are also of a similar magnitude to our modeled 2000–2014 clear-sky trends. Taken together, these results suggest that climate and regional hydrology in the central US are sensitive to the recent reductions in aerosol concentrations. Our work has implications for severely polluted regions outside the US, where improvements in air quality due to reductions in the aerosol burden could inadvertently pose an enhanced climate risk.


2015 ◽  
Vol 370 (1667) ◽  
pp. 20140117 ◽  
Author(s):  
Martin Aubé

Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al . 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane.


2013 ◽  
Vol 13 (14) ◽  
pp. 6687-6711 ◽  
Author(s):  
M. J. Alvarado ◽  
V. H. Payne ◽  
E. J. Mlawer ◽  
G. Uymin ◽  
M. W. Shephard ◽  
...  

Abstract. Modern data assimilation algorithms depend on accurate infrared spectroscopy in order to make use of the information related to temperature, water vapor (H2O), and other trace gases provided by satellite observations. Reducing the uncertainties in our knowledge of spectroscopic line parameters and continuum absorption is thus important to improve the application of satellite data to weather forecasting. Here we present the results of a rigorous validation of spectroscopic updates to an advanced radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM), against a global dataset of 120 near-nadir, over-ocean, nighttime spectra from the Infrared Atmospheric Sounding Interferometer (IASI). We compare calculations from the latest version of LBLRTM (v12.1) to those from a previous version (v9.4+) to determine the impact of spectroscopic updates to the model on spectral residuals as well as retrieved temperature and H2O profiles. We show that the spectroscopy in the CO2 ν2 and ν3 bands is significantly improved in LBLRTM v12.1 relative to v9.4+, and that these spectroscopic updates lead to mean changes of ~0.5 K in the retrieved vertical temperature profiles between the surface and 10 hPa, with the sign of the change and the variability among cases depending on altitude. We also find that temperature retrievals using each of these two CO2 bands are remarkably consistent in LBLRTM v12.1, potentially allowing these bands to be used to retrieve atmospheric temperature simultaneously. The updated H2O spectroscopy in LBLRTM v12.1 substantially improves the a posteriori residuals in the P-branch of the H2O ν2 band, while the improvements in the R-branch are more modest. The H2O amounts retrieved with LBLRTM v12.1 are on average 14% lower between 100 and 200 hPa, 42% higher near 562 hPa, and 31% higher near the surface compared to the amounts retrieved with v9.4+ due to a combination of the different retrieved temperature profiles and the updated H2O spectroscopy. We also find that the use of a fixed ratio of HDO to H2O in LBLRTM may be responsible for a significant fraction of the remaining bias in the P-branch relative to the R-branch of the H2O ν2 band. There were no changes to O3 spectroscopy between the two model versions, and so both versions give positive a posteriori residuals of ~ 0.3 K in the R-branch of the O3 ν3 band. While the updates to the H2O self-continuum employed by LBLRTM v12.1 have clearly improved the match with observations near the CO2 ν3 band head, we find that these updates have significantly degraded the match with observations in the fundamental band of CO. Finally, significant systematic a posteriori residuals remain in the ν4 band of CH4, but the magnitude of the positive bias in the retrieved mixing ratios is reduced in LBLRTM v12.1, suggesting that the updated spectroscopy could improve retrievals of CH4 from satellite observations.


Sign in / Sign up

Export Citation Format

Share Document