scholarly journals Response of soil respiration to nitrogen addition along a degradation gradient in a temperate steppe of northern China

Author(s):  
Jinbin Chen ◽  
Xiaotian Xu ◽  
Hongyan Liu ◽  
Wei Wang

Abstract. Although numerous studies have been conducted on the responses of soil respiration (Rs) to nitrogen (N) addition in grassland ecosystems, it remains unclear whether a nonlinear relationship between Rs and N addition exists and whether there is a uniform response across grasslands with different degradation status. We established a field experiment with six N treatments (0, 10, 20, 30, 40, and 50 g N m−2 y−1) on four grassland sites, each with a varied degradation states in the Inner Mongolia steppe of northern China during the growing seasons of 2012 and 2013. Rs and its major influential factors, including aboveground biomass, root biomass, plant tissues carbon (C) and N concentrations, soil organic carbon (SOC) and soil total nitrogen (STN), microbial biomass and soil pH, were measured. Results show that N fertilization did not change the seasonal patterns of Rs but it changed the magnitude of Rs in grasslands with a different degradation status and only degradation had signification effects on Rs. This shows that variations of Rs in degraded grasslands were due to the difference in SOC content. The response of Rs to N addition differed with the severity of degradation. Furthermore, the response of Rs to N addition slowed down over time. The dominant factor controlling Rs changed across different degradation grasslands. The leading factors for Rs were SOC and STN in non-degraded and moderately degraded grassland; soil pH in severely degraded grassland; and aboveground biomass and root biomass in extremely degraded grassland. Our results highlight the importance of considering the degradation level of grassland to identify soil carbon emissions in grassland ecosystems, and N addition may alter the difference of soil carbon emissions in different degraded grasslands and change its soil carbon emissions pattern.

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 260
Author(s):  
Bo Yao ◽  
Qiwu Hu ◽  
Guihua Zhang ◽  
Yafeng Yi ◽  
Meijuan Xiao ◽  
...  

Forests near rapidly industrialized and urbanized regions are often exposed to elevated CO2, increased N deposition, and heavy metal pollution. To date, the effects of elevated CO2 and/or increased N deposition on soil respiration (Rs) under heavy metal contamination are unclear. In this study, we firstly investigated Rs in Cd-contaminated model forests with CO2 enrichment and N addition in subtropical China. Results showed that Rs in all treatments exhibited similar clear seasonal patterns, with soil temperature being a dominant control. Cadmium addition significantly decreased cumulative soil CO2 efflux by 19% compared to the control. The inhibition of Rs caused by Cd addition was increased by N addition (decreased by 34%) was partially offset by elevated CO2 (decreased by 15%), and was not significantly altered by the combined N addition and rising CO2. Soil pH, microbial biomass carbon, carbon-degrading hydrolytic enzymes, and fine root biomass were also significantly altered by the treatments. A structural equation model revealed that the responses of Rs to Cd stress, elevated CO2, and N addition were mainly mediated by soil carbon-degrading hydrolytic enzymes and fine root biomass. Overall, our findings indicate that N deposition may exacerbate the negative effect of Cd on Rs in Cd-contaminated forests and benefit soil carbon sequestration in the future at increasing atmospheric CO2 levels.


2014 ◽  
Vol 36 (6) ◽  
pp. 573 ◽  
Author(s):  
Xiangyang Hou ◽  
Zhen Wang ◽  
Schellenberg P. Michael ◽  
Lei Ji ◽  
Xiangjun Yun

Soil respiration is a major process for organic carbon losses from arid ecosystems. A field experiment was conducted in 2010 and 2012 on the responses to continuous grazing, rotational grazing and no grazing on desert steppe vegetation in northern China. The growing season in 2010 was relatively dry and in 2012 was relatively wet. The results showed that mean soil respiration was the highest with no grazing in both growing seasons. Compared with no grazing, the soil respiration was decreased by 23.0% under continuous grazing and 14.1% under seasonal rotational grazing. Soil respiration increased linearly with increasing soil water gravimetric content, aboveground net primary productivity (ANPP), belowground net primary productivity (BNPP) and soil carbon and nitrogen contents across the 2 years, whereas a negative correlation was detected between soil respiration and soil temperature. A significant decrease in soil respiration was observed under both continuous grazing and in seasonal rotational grazing in the dry growing season, but no significant difference was detected in the wet growing season. In the wet year, only a non-significant difference in soil respiration was observed between different grazing types. Patterns of seasonal precipitation strongly affected the temporal changes of soil respiration as well as its response to different grazing types. The findings highlight the importance of differences in abiotic (soil temperature, soil water gravimetric content and soil carbon and nitrogen contents) and biotic (ANPP, BNPP and litter mass) factors in mediating the responses of soil respiration to the different grazing regimes.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 544 ◽  
Author(s):  
Bo Zhao ◽  
Yan Geng ◽  
Jing Cao ◽  
Lu Yang ◽  
Xiuhai Zhao

Increasing atmospheric nitrogen (N) deposition has profound effects on carbon (C) cycling in forest ecosystems. As an important part of belowground C dynamics, soil respiration is potentially affected by changing N availability. However, the responses of total soil respiration (RST) and its three components, soil respiration derived from plant roots (RSR), root-free soil (RSS) and the litter layer (RSL), to such N enrichment remains poorly understood. To assess the effects of N enrichment on soil respiration components, three levels of N addition, namely low (LN, 50 kg N ha−1 year−1), medium (MN, 100 kg N ha−1 year−1) and high (HN, 150 kg N ha−1 year−1), were conducted over five growing seasons from 2011 to 2015 in a temperate Chinese pine (Pinus tabulaeformis) forest in northern China. A control plot without N addition (CK) was also established. The five-year mean annual rate of RST was 2.18 ± 0.43 μmol m−2 s−1, and the contributions of RSR, RSS and RSL were 8.8 ± 3.1%, 82.2 ± 4.5% and 9.0 ± 5.5%, respectively. Compared with CK, RST was significantly increased by 16.5% in the HN plots, but not in the LN or MN treatments. RSS was significantly decreased by 18.1%, 26.6% and 18.4% in the LN, MN and HN plots, respectively, due to the reduction of both microbial biomass carbon (MBC) and enzyme activity. In contrast, RSR was increased by more than twice under the MN treatment, which promoted root growth and activity (higher fine root biomass and N concentration). A significant elevation in RSL was only detected in the HN plots, where the increased litter input enhanced litter decomposition and hence RSL. Our findings clearly demonstrated that N addition of different intensities had different effects on soil components. In particular, the above- and belowground components of heterotrophic respiration, RSL and RSR, showed contrasting responses to high level addition of N. Thus, we highlight that the response of soil respiration components to N addition should be examined individually. Our results may contribute to a better understanding of soil respiration dynamics under future N scenarios, and have important implications in forest management.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7112 ◽  
Author(s):  
Cheng Nie ◽  
Yue Li ◽  
Lei Niu ◽  
Yinghui Liu ◽  
Rui Shao ◽  
...  

Background As one of the important management practices of grassland ecosystems, grazing has fundamental effects on soil properties, vegetation, and soil microbes. Grazing can thus alter soil respiration (Rs) and the soil carbon cycle, yet its impacts and mechanisms remain unclear. Methods To explore the response of soil carbon flux and temperature sensitivity to different grazing systems, Rs, soil temperature (ST), and soil moisture (SM) were observed from December 2014 to September 2015 in a typical steppe of Inner Mongolia under three grazing systems: year-long grazing, rest-rotation grazing, and grazing exclusion. In addition, plant aboveground and root biomass, soil microbial biomass and community composition, and soil nutrients were measured during the pilot period. Results Soil respiration was significantly different among the three grazing systems. The average Rs was highest under rest-rotation grazing (1.26 μmol·m−2·s−1), followed by grazing exclusion (0.98 μmol·m−2·s−1) and year-long grazing (0.94 μmol·m−2·s−1). Rs was closely associated with ST, SM, potential substrate and root, and soil microbe activity. The effects of grazing among two grazing systems had generality, but were different due to grazing intensity. The root biomass was stimulated by grazing, and the rest-rotation grazing system resulted in the highest Rs. Grazing led to decreases in aboveground and microbial biomass as well as the loss of soil total nitrogen and total phosphorus from the steppe ecosystem, which explained the negative effect of grazing on Rs in the year-long grazing system compared to the grazing exclusion system. The temperature sensitivity of Rs (Q10) was higher in the rest-rotation and year-long grazing systems, likely due to the higher temperature sensitivity of rhizosphere respiration and higher “rhizosphere priming effect” in the promoted root biomass. The structural equation model analysis showed that while grazing inhibited Rs by reducing soil aeration porosity, ground biomass and SM, it increased Q10 but had a lower effect than other factors. A better understanding of the effects of grazing on soil respiration has important practical implications.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10729
Author(s):  
Yutao Wang ◽  
Yingzhong Xie ◽  
Gillian Rapson ◽  
Hongbin Ma ◽  
Le Jing ◽  
...  

Background Precipitation influences the vulnerability of grassland ecosystems, especially upland grasslands, and soil respiration is critical for carbon cycling in arid grassland ecosystems which typically experience more droughty conditions. Methods We used three precipitation treatments to understand the effect of precipitation on soil respiration of a typical arid steppe in the Loess Plateau in north-western China. Precipitation was captured and relocated to simulate precipitation rates of 50%, 100%, and 150% of ambient precipitation. Results and Discussion Soil moisture was influenced by all precipitation treatments. Shoot biomass was greater, though non-significantly, as precipitation increased. However, both increase and decrease of precipitation significantly reduced root biomass. There was a positive linear relationship between soil moisture and soil respiration in the study area during the summer (July and August), when most precipitation fell. Soil moisture, soil root biomass, pH, and fungal diversity were predictors of soil respiration based on partial least squares regression, and soil moisture was the best of these. Conclusion Our study highlights the importance of increased precipitation on soil respiration in drylands. Precipitation changes can cause significant alterations in soil properties, microbial fungi, and root biomass, and any surplus or transpired moisture is fed back into the climate, thereby affecting the rate of soil respiration in the future.


2006 ◽  
Vol 234 ◽  
pp. S195 ◽  
Author(s):  
Aydın Tüfekçioğlu ◽  
Mehmet Küçük ◽  
Bülent Sağlam ◽  
Ertuğrul Bilgili ◽  
Lokman Altun ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Hong Wei ◽  
Xiuling Man

The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China.


Sign in / Sign up

Export Citation Format

Share Document