scholarly journals No long-term effect of land-use activities on soil carbon dynamics in tropical montane grasslands

2017 ◽  
Author(s):  
Viktoria Oliver ◽  
Imma Oliveras ◽  
Jose Kala ◽  
Rebecca Lever ◽  
Yit Arn Teh

Abstract. Montane tropical soils are a large carbon (C) reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM) following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands; an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A combination of density and particle-size fractionation was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free LF, especially at the lower depths (10–20 and 20–30 cm). The free LF in the control soils made 20 % of the bulk soil mass and 30 % of the soil C content compared to the burnt-grazed soils, which had the smallest recovery of free LF (10 %) and significantly lower C content (14 %). The burnt soils had a much higher proportion of C in the occluded LF (12 %) compared to the non-burnt soils (7 %) and there was no significant difference among the treatments in the heavy F (~ 70 %). The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2 fluxes were increased and the dominant temperature driver was obscured by some other process, such as changes in plant C and N allocation promoting autotrophic respiration. In addition, the free LF was negatively affected when these two anthropogenic activities took place on the same site. Most likely a result of reduced detritus being incorporated into the soil. A positive finding from this study is that the total soil C stocks were not significantly affected and the long term C storage in the occluded LF and heavy F were not negatively impacted. Possibly this is because of low intensity fire, fire-resilient grasses and the grazing pressure is below the threshold to cause severe degradation.

2017 ◽  
Vol 14 (24) ◽  
pp. 5633-5646 ◽  
Author(s):  
Viktoria Oliver ◽  
Imma Oliveras ◽  
Jose Kala ◽  
Rebecca Lever ◽  
Yit Arn Teh

Abstract. Montane tropical soils are a large carbon (C) reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM) following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long-term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands, an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A density fractionation method was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free light fraction (LF), especially at the lower depths (10–20 and 20–30 cm). In the control soils, 20 % of the material recovered was in the free LF, which contained 30 % of the soil C content. In comparison, the burnt–grazed soil had the smallest recovery of the free LF (10 %) and a significantly lower C content (14 %). The burnt soils had a much higher proportion of C in the occluded LF (12 %) compared to the not-burnt soils (7 %) and there was no significant difference among the treatments in the heavy fraction (F) ( ∼  70 %). The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2 fluxes were increased and the dominant temperature driver was obscured by some other process, such as changes in plant C and N allocation. In addition, the free LF was reduced when these two anthropogenic activities took place on the same site – most likely a result of reduced detritus being incorporated into the soil. A positive finding from this study is that the total soil C stocks were not significantly affected and the long-term (+10 years) C storage in the occluded LF and heavy F were not negatively impacted. Possibly this is because of low-intensity fire, fire-resilient grasses and because the grazing pressure is below the threshold necessary to cause severe degradation.


2020 ◽  
Vol 17 (21) ◽  
pp. 5223-5242 ◽  
Author(s):  
Isabelle Basile-Doelsch ◽  
Jérôme Balesdent ◽  
Sylvain Pellerin

Abstract. Soil organic matter (OM) represents a key C pool for climate regulation but also an essential component for soil functions and services. Scientific research in the 21st century has considerably improved our knowledge of soil organic matter and its dynamics, particularly under the pressure of the global disruption of the carbon cycle. This paper reviews the processes that control C dynamics in soil, the representation of these processes over time, and their dependence on variations in major biotic and abiotic factors. The most recent advanced knowledge gained on soil organic matter includes the following. (1) Most organic matter is composed of small molecules, derived from living organisms, without transformation via additional abiotic organic polymerization; (2) microbial compounds are predominant in the long term; (3) primary belowground production contributes more to organic matter than aboveground inputs; (4) the contribution of less biodegradable compounds to soil organic matter is low in the long term; (5) two major factors determine the soil organic carbon production “yield” from the initial substrates: the yield of carbon used by microorganisms and the association with minerals, particularly poorly crystalline minerals, which stabilize microbial compounds; (6) interactions between plants and microorganisms also regulate the carbon turnover time and therefore carbon stocks; (7) among abiotic and biotic factors that regulate the carbon turnover time, only a few are considered in current modeling approaches (i.e., temperature, soil water content, pH, particle size, and sometimes C and N interactions); and (8) although most models of soil C dynamics assume that the processes involved are linear, there are now many indications of nonlinear soil C dynamics processes linked to soil OM dynamics (e.g., priming). Farming practices, therefore, affect soil C stocks not only through carbon inputs but also via their effect on microbial and organomineral interactions, yet it has still not been possible to properly identify the main mechanisms involved in C loss (or gain). Greater insight into these mechanisms and their interdependencies, hierarchy and sensitivity to agricultural practices could provide future levers of action for C sequestration in soil.


1986 ◽  
Vol 66 (2) ◽  
pp. 303-313 ◽  
Author(s):  
J. F. DORMAAR ◽  
T. G. SOMMERFELDT

A long-term field experiment was initiated in 1973 to determine the safe loading capacity of a Lethbridge loam (Dark Brown Chernozemic) with feedlot manure. The effect of 10 yr of feedlot manure loading was examined by analyzing a number of inorganic and organic matter constituents of the Ap horizon. Although soil C, P, and enzyme activities increased as feedlot manure additions to the soil increased, these increases diminished at triple the recommended loading regimes. Phosphatase activity was checked by increased labile phosphorus levels. Levels of adenosine 5′-triphosphate increased but fluctuated with time under various moisture regimes. The C:N ratios, percent monosaccharide C of total soil C, and the ratio of deoxyhexoses to pentoses remained constant while the percentage of manure C retained decreased as feedlot manure loading increased. The distribution between pentoses and hexoses was strongly affected by feedlot manure levels while the deoxyhexose percentage of the sum of the eight monosaccharides determined remained about the same. Feedlot manure additions, at triple the recommended level, increased the labile P as a percentage of total soil P to around 50%. Although mineralization did not keep pace with the quantities applied, the presence of undecomposed manure did not seem to have harmful agronomic effects. Key words: ATP, feedlot manure, labile phosphorus, monosaccharides, organic matter


2021 ◽  
Author(s):  
Kazumichi Fujii ◽  
Risako Mitani ◽  
Yoshiyuki Inagaki ◽  
Chie Hayakawa ◽  
Makoto Shibata ◽  
...  

Abstract AimsThe loss of soil organic matter (SOM) has widely been reported in the tropics after changing land use from shifting cultivation to continuous cropping. We tested whether continuous maize cultivation accelerates SOM loss compared to upland rice and forest fallow. Methods: Because litter sources include C4 plants (maize in maize fields and Imperata grass in upland rice fields) in Thailand, C3-derived and C4-derived SOM can be traced using the differences in natural 13C abundance (δ13C) between C3 and C4 plants. We analyzed the effects of land use history (cultivation or forest fallow period) on C stocks in the surface soil. Soil C stocks decreased with the cultivation period in both upland rice and maize fields. ResultsThe rate of soil organic carbon loss was higher in maize fields than in upland rice fields. The decomposition rate constant (first order kinetics) of C3-plant-derived SOM was higher in the maize fields than in the upland rice fields and the C4-plant-derived SOM in the forest fallow. Soil surface exposure and low input of root-derived C in the maize fields are considered to accelerate SOM loss. Soil C stocks increased with the forest fallow period, consistent with the slow decomposition of C4-plant-derived SOM in the forest fallows. ConclusionsContinuous maize cultivation accelerates SOM loss, while forest fallow and upland rice cultivation could mitigate the SOM loss caused by continuous maize cultivation.


2015 ◽  
Vol 12 (19) ◽  
pp. 5831-5852 ◽  
Author(s):  
E. Hassler ◽  
M. D. Corre ◽  
A. Tjoa ◽  
M. Damris ◽  
S. R. Utami ◽  
...  

Abstract. Expansion of palm oil and rubber production, for which global demand is increasing, causes rapid deforestation in Sumatra, Indonesia, and is expected to continue in the next decades. Our study aimed to (1) quantify changes in soil CO2 and CH4 fluxes with land-use change and (2) determine their controlling factors. In Jambi Province, Sumatra, we selected two landscapes on heavily weathered soils that differ mainly in texture: loam and clay Acrisol soils. In each landscape, we investigated the reference land-use types (forest and secondary forest with regenerating rubber) and the converted land-use types (rubber, 7–17 years old, and oil palm plantations, 9–16 years old). We measured soil CO2 and CH4 fluxes monthly from December 2012 to December 2013. Annual soil CO2 fluxes from the reference land-use types were correlated with soil fertility: low extractable phosphorus (P) coincided with high annual CO2 fluxes from the loam Acrisol soil that had lower fertility than the clay Acrisol soil (P < 0.05). Soil CO2 fluxes from the oil palm (107.2 to 115.7 mg C m−2 h−1) decreased compared to the other land-use types (between 178.7 and 195.9 mg C m−2 h−1; P < 0.01). Across land-use types, annual CO2 fluxes were positively correlated with soil organic carbon (C) and negatively correlated with 15N signatures, extractable P and base saturation. This suggests that the reduced soil CO2 fluxes from oil palm were the result of strongly decomposed soil organic matter and reduced soil C stocks due to reduced litter input as well as being due to a possible reduction in C allocation to roots due to improved soil fertility from liming and P fertilization in these plantations. Soil CH4 uptake in the reference land-use types was negatively correlated with net nitrogen (N) mineralization and soil mineral N, suggesting N limitation of CH4 uptake, and positively correlated with exchangeable aluminum (Al), indicating a decrease in methanotrophic activity at high Al saturation. Reduction in soil CH4 uptake in the converted land-use types (ranging from −3.0 to −14.9 μg C m−2 h−1) compared to the reference land-use types (ranging from −20.8 to −40.3 μg C m−2 h−1; P < 0.01) was due to a decrease in soil N availability in the converted land-use types. Our study shows for the first time that differences in soil fertility control the soil–atmosphere exchange of CO2 and CH4 in a tropical landscape, a mechanism that we were able to detect by conducting this study on the landscape scale.


2000 ◽  
Vol 80 (3) ◽  
pp. 429-435 ◽  
Author(s):  
D. Curtin ◽  
F. Selles ◽  
H. Wang ◽  
R. P. Zentner ◽  
C. A. Campbell

Planting of cultivated land with perennial forages may increase C sequestration in soil organic matter and contribute to atmospheric CO2 mitigation strategies. However, little is known of the effectiveness of introduced grasses in restoring organic C in cultivated soils of the Canadian prairies. Our objective was to evaluate the C sequestration potential of crested wheatgrass (CWG) (Agropyron cristatum L. Gaertn.), a widely introduced, early-season grass. In 1995 and 1996, we measured soil CO2 fluxes, C inputs in plant material and total soil C under CWG and a fallow-wheat (Triticum aestivum L.)-wheat rotation (F-W-W). These were two of the treatments in a replicated crop rotation experiment initiated in 1987 in southwestern Saskatchewan on a medium-textured soil that had previously been under long-term wheat production. Average to above-average growing season (1 May to 31 July) precipitation in 1995–1996 resulted in annual inputs of C in wheat residues of 3000–4500 kg ha−1. Growth of CWG, which was hayed and removed, was relatively poor in both years, but especially in 1995 when dry matter yield was only 1300 kg ha−1. For the 1988–1996 period, there was a strong correlation (R2 = 0.81; P < 0.001) between CWG yield and precipitation received in May, showing the importance of early spring rains determining CWG yield and C inputs to the soil. Carbon inputs under CWG (1200 kg ha−1 in 1995 and 2400 kg ha−1 in 1996) were less than under wheat but CO2-C emissions were similar under CWG and wheat. Soil C measurements in fall 1996 confirmed that CWG did not gain C relative to the F-W-W rotation. Although failure of CWG soil to store more C than cultivated soil may be partly because weather conditions during the experiment were more favourable for wheat than CWG, our results cast doubt on the ability of CWG to restore C stocks in prairie soils degraded by long-term cropping. Key words: Carbon sequestation, carbon dioxide emissions, wheat, crested wheatgrass, fallow


2012 ◽  
Vol 9 (2) ◽  
pp. 853-865 ◽  
Author(s):  
S. Meyer ◽  
J. Leifeld ◽  
M. Bahn ◽  
J. Fuhrer

Abstract. Land-use change (LUC) and management are among the major driving forces of soil carbon (C) storage. Abandonment of mountain grassland promotes accumulation of aboveground biomass and litter, but related responses of soil organic matter (SOM) dynamics are uncertain. To determine SOM-C turnover we sampled 0–10 cm of soils in the European Alps along two land-use gradients (hay meadows, grazed pastures and abandoned grasslands) of different management intensity. A first land-use gradient was located at Stubai Valley (MAT: 3 °C, MAP: 1097 mm) in Austria and a second at Matsch Valley (MAT: 6.6 °C, MAP: 527 mm) in Italy. We estimated C input and decomposition rates of water-floatable and free particulate organic matter (wPOM, fPOM <1.6 g cm−3) and aggregate-occluded particulate and mineral-associated organic matter (oPOM <1.6 g cm−3, mOM >1.6 g cm−3) using bomb radiocarbon. In mountain grasslands average C turnover increased from roots (3 yr) < wPOM (5 yr) < fPOM (80 yr) < oPOM (108 yr) < mOM (192 yr). Among SOM fractions the turnover of fPOM-C varied most in relation to management. Along both land-use gradients C input pathways shifted from root-derived towards litter-derived C. The C input rates of both wPOM-C and fPOM-C were affected by land management at both sites. In contrast, oPOM-C and mOM-C dynamics remained relatively stable in response to grassland abandonment. Carbon accumulation rates of free POM decreased strongly with time since LUC (10, 25 and 36 yr). For wPOM-C, for example, it decreased from 7.4 > 2.2> 0.8 g C m−2 yr−1. At both sites, most C was sequestered in the first years after LUC and free POM reached new steady state within 20–40 yr. We conclude that w-and fPOM-C vs. oPOM-C dynamics respond differently to grassland management change and thus POM does not represent a homogeneous SOM fraction. Sequestered C is stored in the labile POM and not stabilized in the long-term. Thus, it is unlikely that abandonment, the dominant form of LUC in the European Alps, provides a substantial net soil C sink.


2020 ◽  
Author(s):  
Isabelle Basile-Doelsch ◽  
Jérôme Balesdent ◽  
Sylvain Pellerin

Abstract. Scientific research in the 21st century has considerably improved our knowledge of soil organic matter and its dynamics, particularly under the pressure of the global disruption of the carbon cycle. This paper reviews the processes that control C dynamics in soil, the representation of these processes over time, and their dependence on variations in major biotic and abiotic factors. The most recent advances in soil organic matter knowledge are: – Most organic matter is composed of small molecules, derived from living organisms, without transformation via additional abiotic organic polymerization. – Microbial compounds are predominant in the long term. – Primary belowground production contributes more to organic matter than aboveground inputs. – Contribution of less biodegradable compounds to soil organic matter is low in the long term. – Two major factors determine the soil organic carbon production yield from the initial substrates: the yield of carbon used by microorganisms and the association with minerals, particularly poorly crystallized minerals, which stabilize microbial compounds. – Interactions between plants and microorganisms and between microbial communities affect or even regulate carbon residence times, and therefore carbon stocks. Farming practices therefore affect soil C stocks not only through carbon inputs but also via their effect on microbial and organomineral interactions.


2011 ◽  
Vol 8 (3) ◽  
pp. 5955-5990 ◽  
Author(s):  
M. F. Cotrufo ◽  
G. Alberti ◽  
I. Inglima ◽  
H. Marjanović ◽  
D. LeCain ◽  
...  

Abstract. Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.


2011 ◽  
Vol 8 (9) ◽  
pp. 2729-2739 ◽  
Author(s):  
M. F. Cotrufo ◽  
G. Alberti ◽  
I. Inglima ◽  
H. Marjanović ◽  
D. LeCain ◽  
...  

Abstract. Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.


Sign in / Sign up

Export Citation Format

Share Document