scholarly journals Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

2011 ◽  
Vol 8 (3) ◽  
pp. 5955-5990 ◽  
Author(s):  
M. F. Cotrufo ◽  
G. Alberti ◽  
I. Inglima ◽  
H. Marjanović ◽  
D. LeCain ◽  
...  

Abstract. Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

2011 ◽  
Vol 8 (9) ◽  
pp. 2729-2739 ◽  
Author(s):  
M. F. Cotrufo ◽  
G. Alberti ◽  
I. Inglima ◽  
H. Marjanović ◽  
D. LeCain ◽  
...  

Abstract. Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.


2017 ◽  
Author(s):  
Viktoria Oliver ◽  
Imma Oliveras ◽  
Jose Kala ◽  
Rebecca Lever ◽  
Yit Arn Teh

Abstract. Montane tropical soils are a large carbon (C) reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM) following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands; an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A combination of density and particle-size fractionation was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free LF, especially at the lower depths (10–20 and 20–30 cm). The free LF in the control soils made 20 % of the bulk soil mass and 30 % of the soil C content compared to the burnt-grazed soils, which had the smallest recovery of free LF (10 %) and significantly lower C content (14 %). The burnt soils had a much higher proportion of C in the occluded LF (12 %) compared to the non-burnt soils (7 %) and there was no significant difference among the treatments in the heavy F (~ 70 %). The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2 fluxes were increased and the dominant temperature driver was obscured by some other process, such as changes in plant C and N allocation promoting autotrophic respiration. In addition, the free LF was negatively affected when these two anthropogenic activities took place on the same site. Most likely a result of reduced detritus being incorporated into the soil. A positive finding from this study is that the total soil C stocks were not significantly affected and the long term C storage in the occluded LF and heavy F were not negatively impacted. Possibly this is because of low intensity fire, fire-resilient grasses and the grazing pressure is below the threshold to cause severe degradation.


2020 ◽  
Author(s):  
Chris McCloskey ◽  
Guy Kirk ◽  
Wilfred Otten ◽  
Eric Paterson

<p>Our understanding of soil carbon (C) dynamics is limited; field measurements necessarily conflate fluxes from plant and soil sources and we therefore lack long-term field-scale data on soil C fluxes to use to test and improve soil C models. Furthermore, it is often unclear whether findings from lab-based studies, such as the presence of rhizosphere priming, apply to soil systems in the field. It is particularly important that we are able to understand the roles of soil temperature and moisture, and plant C inputs, as drivers of soil C dynamics in order to predict how changing climate and plant productivity may affect the net C balance of soils. We have developed a field laboratory with which to generate much-needed long-term C flux data under field conditions, giving near-continuous measurements of plant and soil C fluxes and their drivers.</p><p>The laboratory contains 24 0.8-m diameter, 1-m deep, naturally-structured soil monoliths of two contrasting C3 soils (a clay-loam and a sandy soil) in lysimeters. These are sown with a C4 grass (<em>Bouteloua dactyloides</em>), providing a large difference in C isotope signature between C4 plant respiration and C3-origin soil organic matter (SOM) decomposition, which enables clear partitioning of the net C flux. This species is used as a pasture grass in the United States, and regular trimming through the growing season simulates low-intensity grazing. The soil monoliths are fitted with gas flux chambers and connected via an automated sampling loop to a cavity ring-down spectrometer, which measures the concentration and <sup>12</sup>C:<sup>13</sup>C isotopic ratio of CO<sub>2</sub> during flux chamber closure. Depth-resolved measurements of soil temperature and moisture in each monolith are made near-continuously, along with measurements of incoming solar radiation, rainfall, and air temperature a the field site. The gas flux chambers are fitted with removable reflective backout covers allowing flux measurements both incorporating, and in the absence of, photosynthesis.</p><p>We have collected net ecosystem respiration data, measurements of photosynthesis, and recorded potential drivers of respiration over two growing seasons through 2018 and 2019. Through partitioning fluxes between plant respiration and SOM mineralisation we have revealed clear diurnal trends in both plant and soil C fluxes, along with overarching seasonal trends which modify both the magnitude of fluxes and their diurnal patterns. Rates of photosynthesis have been interpolated between measurement periods using machine learning to generate a predictive model, which has allowed us to investigate the effect of plant productivity on SOM mineralisation and assess whether rhizosphere priming can be detected in our system. Through regression analyses and linear mixed effects modelling we have evaluated the roles of soil temperature, soil moisture, and soil N content as drivers of variation in plant and soil respiration in our two contrasting soils. This has shown soil temperature to be the most important control on SOM mineralisation, with soil moisture content playing only a minor role. We have also used our empirical models to suggest how the carbon balance of pasture and grassland soils may respond to warming temperatures.</p>


2017 ◽  
Vol 14 (24) ◽  
pp. 5633-5646 ◽  
Author(s):  
Viktoria Oliver ◽  
Imma Oliveras ◽  
Jose Kala ◽  
Rebecca Lever ◽  
Yit Arn Teh

Abstract. Montane tropical soils are a large carbon (C) reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM) following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long-term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands, an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A density fractionation method was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free light fraction (LF), especially at the lower depths (10–20 and 20–30 cm). In the control soils, 20 % of the material recovered was in the free LF, which contained 30 % of the soil C content. In comparison, the burnt–grazed soil had the smallest recovery of the free LF (10 %) and a significantly lower C content (14 %). The burnt soils had a much higher proportion of C in the occluded LF (12 %) compared to the not-burnt soils (7 %) and there was no significant difference among the treatments in the heavy fraction (F) ( ∼  70 %). The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2 fluxes were increased and the dominant temperature driver was obscured by some other process, such as changes in plant C and N allocation. In addition, the free LF was reduced when these two anthropogenic activities took place on the same site – most likely a result of reduced detritus being incorporated into the soil. A positive finding from this study is that the total soil C stocks were not significantly affected and the long-term (+10 years) C storage in the occluded LF and heavy F were not negatively impacted. Possibly this is because of low-intensity fire, fire-resilient grasses and because the grazing pressure is below the threshold necessary to cause severe degradation.


2020 ◽  
Vol 17 (21) ◽  
pp. 5223-5242 ◽  
Author(s):  
Isabelle Basile-Doelsch ◽  
Jérôme Balesdent ◽  
Sylvain Pellerin

Abstract. Soil organic matter (OM) represents a key C pool for climate regulation but also an essential component for soil functions and services. Scientific research in the 21st century has considerably improved our knowledge of soil organic matter and its dynamics, particularly under the pressure of the global disruption of the carbon cycle. This paper reviews the processes that control C dynamics in soil, the representation of these processes over time, and their dependence on variations in major biotic and abiotic factors. The most recent advanced knowledge gained on soil organic matter includes the following. (1) Most organic matter is composed of small molecules, derived from living organisms, without transformation via additional abiotic organic polymerization; (2) microbial compounds are predominant in the long term; (3) primary belowground production contributes more to organic matter than aboveground inputs; (4) the contribution of less biodegradable compounds to soil organic matter is low in the long term; (5) two major factors determine the soil organic carbon production “yield” from the initial substrates: the yield of carbon used by microorganisms and the association with minerals, particularly poorly crystalline minerals, which stabilize microbial compounds; (6) interactions between plants and microorganisms also regulate the carbon turnover time and therefore carbon stocks; (7) among abiotic and biotic factors that regulate the carbon turnover time, only a few are considered in current modeling approaches (i.e., temperature, soil water content, pH, particle size, and sometimes C and N interactions); and (8) although most models of soil C dynamics assume that the processes involved are linear, there are now many indications of nonlinear soil C dynamics processes linked to soil OM dynamics (e.g., priming). Farming practices, therefore, affect soil C stocks not only through carbon inputs but also via their effect on microbial and organomineral interactions, yet it has still not been possible to properly identify the main mechanisms involved in C loss (or gain). Greater insight into these mechanisms and their interdependencies, hierarchy and sensitivity to agricultural practices could provide future levers of action for C sequestration in soil.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peter D. McIntosh ◽  
James L. Hardcastle ◽  
Tobias Klöffel ◽  
Martin Moroni ◽  
Talitha C. Santini

Small areas of the wetter parts of southeast Australia including Tasmania support high-biomass “wet” eucalypt forests, including “mixed” forests consisting of mature eucalypts up to 100 m high with a rainforest understorey. In Tasmania, mixed forests transition to lower biomass rainforests over time. In the scientific and public debate on ways to mitigate climate change, these forests have received attention for their ability to store large amounts of carbon (C), but the contribution of soil C stocks to the total C in these two ecosystems has not been systematically researched, and consequently, the potential of wet eucalypt forests to serve as long-term C sinks is uncertain. This study compared soil C stocks to 1 m depth at paired sites under rainforest and mixed forests and found that there was no detectable difference of mean total soil C between the two forest types, and on average, both contained about 200 Mg·ha−1 of C. Some C in subsoil under rainforests is 3000 years old and retains a chemical signature of pyrogenic C, detectable in NMR spectra, indicating that soil C stocks are buffered against the effects of forest succession. The mean loss of C in biomass as mixed forests transition to rainforests is estimated to be about 260 Mg·ha−1 over a c. 400-year period, so the mature mixed forest ecosystem emits about 0.65 Mg·ha−1·yr−1 of C during its transition to rainforest. For this reason and because of the risk of forest fires, setting aside large areas of wet eucalypt forests as reserves in order to increase landscape C storage is not a sound strategy for long-term climate change mitigation. Maintaining a mosaic of managed native forests, including regenerating eucalypts, mixed forests, rainforests, and reserves, is likely to be the best strategy for maintaining landscape C stocks.


2016 ◽  
Author(s):  
Dario A. Fornara ◽  
Elizabeth - Anne Wasson ◽  
Peter Christie ◽  
Catherine J. Watson

Abstract. Sustainable grassland intensification aims to increase plant yields while maintaining soils’ ability to act as sinks rather than sources of atmospheric CO2. High biomass yields, however, from managed grasslands can be only maintained through long-term nutrient fertilization, which can significantly affect soil carbon (C) storage and cycling. Key questions remain about (1) how long-term inorganic vs. organic fertilization influences soil C stocks, and (2) how soil C gains (or losses) contribute to the long-term C balance of managed grasslands. Using 43 years of data from a permanent grassland experiment we show that soils not only act as significant C sinks but have not yet reached C saturation. Even unfertilized-control soils showed C sequestration rates of 0.35 Mg C ha−1 yr−1 (i.e. 35 g C m−2 yr−1; 0–15 cm depth) between 1970 and 2013. High application rates of liquid manure (i.e. cattle slurry) further increased soil C sequestration to 0.86 Mg C ha−1 yr−1 (i.e. 86 g C m−2 yr−1) and a key cause of this C accrual was greater C inputs from cattle slurry. However, average coefficients of ‘Slurry-C retention’ suggest that 85 % of C added yearly through liquid manure is lost possibly via CO2 fluxes and organic C leaching from soils. Inorganically fertilized soils (i.e. NPK) had the lowest ‘C-gain-efficiency’ (i.e. unit of C gained per unit of N added) and lowest C sequestration (similar to control soils). Soils receiving cattle slurry showed higher C-gain and N-retention efficiencies compared to soils receiving NPK or pig slurry. We estimate that net rates of CO2-sequestration in the soil top 15 cm can offset 9-to-25 % of GHG emissions from intensive management. However, because of multiple GHG sources associated with livestock farming, the net C balance of these grasslands remains positive (9-to-12 Mg CO2-equivalent ha−1 yr−1), thus contributing to climate change. Further C-gain efficiencies (e.g. reduced enteric fermentation and use of feed concentrates, better nutrient-management) are required to make grassland intensification more sustainable.


2021 ◽  
Author(s):  
Weilin Huang ◽  
Peter van Bodegom ◽  
Toni Viskari ◽  
Jari Liski ◽  
Nadejda Soudzilovskaia

<p>Mycorrhizae, a plant-fungal symbiosis, is an important contributor to below ground-microbial interactions, and hypothesized to play a paramount role in soil carbon (C) sequestration. Ectomycorrhizae (EM) and arbuscular mycorrhizae (AM) are the two dominant forms of mycorrhizae featured by nearly all Earth plant species. However, the difference in the nature of their contributions to the processes of plant litter decomposition is still understood poorly. Current soil carbon models treat mycorrhizal impacts on the processes of soil carbon transformation as a black box. This retards scientific progress in mechanistic understanding of soil C dynamics.</p><p>We examined four alternative conceptualizations of the mycorrhizal impact on plant litter C transformations, by integrating AM and EM fungal impacts on litter C pools of different recalcitrance into the soil carbon model Yasso15. The best performing concept featured differential impacts of EM and AM on a combined pool of labile C, being quantitatively distinct from impacts of AM and EM on a pool of recalcitrant C.</p><p>Analysis of time dynamics of mycorrhizal impacts on soil C transformations demonstrated that these impacts are larger at the long-term (>2.5yrs) litter decomposition processes, compared to the short-term processes. We detected that arbuscular mycorrhizae controls shorter term decomposition of labile carbon compounds, while ectomycorrhizae dominate the long term decomposition processes of highly recalcitrant carbon elements. Overall, adding our mycorrhizal module into the Yasso model greatly improved the accuracy of the temporal dynamics of carbon sequestration.</p><p>A sensitivity analysis of litter decomposition to climate and mycorrhizal factors indicated that ignoring the mycorrhizal impact on the decomposition leads to an overestimation of climate impacts. This suggests that being co-linear with climate impacts, mycorrhizal impacts could be partly hidden within climate factors in soil carbon models, reducing the capability of such models to mechanistically predict impacts of climate vs vegetation change on soil carbon dynamics.</p><p>Our results provide a benchmark to mechanistic modelling of microbial impacts on soil C dynamics. This work opens new pathways to examining the impacts of land-use change and climate change on plant-microbial interactions and their role in soil C dynamics, allowing the integration of microbial processes into global vegetation models used for policy decisions on terrestrial carbon monitoring.</p>


2011 ◽  
Vol 59 (7) ◽  
pp. 654 ◽  
Author(s):  
K. L. Page ◽  
R. C. Dalal ◽  
R. J. Raison

Australia’s harvested native forests are extremely diverse in terms of species-mix, disturbance history and ecology, forest productivity and C storage. Our understanding of the effects of harvesting on C storage and greenhouse gas (GHG) emissions from these systems is incomplete, and this paper consolidates current Australian knowledge, places this in a global context, and identifies areas requiring further study. The uptake of CO2 and the re-accumulation of forest C stocks after harvesting or other disturbance is largely dependent on forest primary production. However, in Australian native forests, knowledge of rates of primary production for the diverse range of species and management practices present is poor. Soil respiration rates following harvest have also been largely unquantified for Australian systems. It is essential that both these parameters are quantified if estimates of net ecosystem production (NEP) are to be made. It is generally acknowledged that harvested forests have a negative NEP, and thus are sources of C, immediately following harvest, but attain a positive NEP as the forest regrows and photosynthetic capacity increases. The magnitude and time course of these changes are largely unknown for most Australian forest systems. In addition, little data are available to quantify the effect on soil C storage, and where estimates have been made these are often subject to methodological uncertainty and are thus highly contentious. Following harvest, the changes that occur to soil structure, moisture content, and N cycling may also influence CH4 and N2O flux, although these fluxes also remain largely unquantified in harvested Australian forests. Given the significant changes to NEP, CH4 and N2O fluxes observed after forest harvest in international studies, it is expected that GHG fluxes would typically increase from Australian native forests following harvest, and then slowly decrease over time as biomass accumulates, and N2O and CH4 fluxes return to background levels. However, it is currently difficult to quantify the magnitude and time course of these changes due to a lack of both gas flux and primary production measurements. Clearly, further research effort to quantify these parameters throughout Australia is required in order to obtain a more reliable picture of the effects of harvesting and other disturbances on forest GHG balance.


2020 ◽  
Author(s):  
Simon Besnard ◽  
Sujan Koirala ◽  
Maurizio Santoro ◽  
Shanning Bao ◽  
Oliver Cartus ◽  
...  

<p>Forests cover about 30% of the terrestrial surface of our planet and store a large part of the terrestrial carbon (C), indicating their fundamental role in terrestrial C dynamics. In recent years, significant advances have been made in understanding terrestrial C cycling across scales, albeit uncertainties remain about fundamental processes, such as photosynthesis, allocation, and mortality, which exert dominant controls on vegetation C dynamics. Allocation plays a critical role in forest ecosystem C cycling by partitioning the products of net photosynthesis into leaves, wood, and below-ground components but is still poorly represented mostly given limitations in process understanding as well as in both suitable and commensurate observations.</p><p>Here, we explore different approaches in constraining C allocation alongside processes driving assimilation and out fluxes in a terrestrial ecosystem model based on novel forest biomass datasets. More specifically, we use a series of temporally changing above-ground biomass (AGB) data from local (i.e. in-situ forest inventory data) to global (i.e. long-term C-band satellite retrievals from 1992 to 2018) scales, in a multi-constraint approach. We explore the information contained in a novel AGB time series to diagnose the potential of using changes in vegetation C stocks, jointly with C and water fluxes, to constrain and parameterize different C allocation modeling approaches. Both at FLUXNET site level and global scale, we will: i) present these novel AGB datasets, their strengths and limitations, ii) demonstrate the relevance of constraining C allocation with such temporally changing AGB estimates, and iii) provide a comparison of different C allocation approaches (i.e. fixed versus dynamic allocation, and an hybrid modeling approach) and their implications in representing ecosystem dynamics.</p>


Sign in / Sign up

Export Citation Format

Share Document