scholarly journals Substrate potential of Eemian to Holocene permafrost organic matter for future microbial greenhouse gas production

Author(s):  
Janina G. Stapel ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
Brian Horsfield ◽  
Kai Mangelsdorf

Abstract. Multiple permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia comprising deposits from Eemian to modern time are investigated to evaluate the stored potential of the freeze-locked organic matter (OM) to serve as substrate for the production of microbial greenhouse gases from thawing permafrost deposits. Deposits from Late Pleistocene glacial periods (comprising MIS 3 and MIS 4) possess an increased aliphatic character and a higher amount of potential substrates, and therefore higher OM quality in terms of biodegradation compared to interglacial deposits from the Eemian (MIS 5e) as well as from the Holocene (MIS 1). To assess the potential of the individual permafrost deposits to provide substrates for microbially induced greenhouse gas generation, concentrations of free and bound acetate as an excellent substrate for methanogenesis are used. The highest free (in pore water and segregated ice) and bound (bound to the organic matrix) acetate-substrate pools of the permafrost deposits are observed within the interstadial MIS 3 and stadial MIS 4 period deposits. In contrast, deposits from the last interglacial MIS 5e show only poor substrate pools. The Holocene deposits reveal a significant bound-acetate pool, representing at least a future substrate potential upon release during OM degradation. Biomarkers for past microbial communities (branched and isoprenoid GDGTs) show also highest abundance of past microbial communities during the MIS 3 and MIS 4 deposits, which indicates higher OM quality with respect to microbial degradation during time of deposition. On a broader perspective, Arctic warming will increase permafrost thaw and favour substrate availability from freeze-locked older permafrost deposits. Therefore, especially those deposits from MIS 3 and MIS 4 show a high potential for providing substrates relevant for methanogenesis.

2018 ◽  
Vol 15 (7) ◽  
pp. 1969-1985 ◽  
Author(s):  
Janina G. Stapel ◽  
Georg Schwamborn ◽  
Lutz Schirrmeister ◽  
Brian Horsfield ◽  
Kai Mangelsdorf

Abstract. In this study the organic matter (OM) in several permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia was investigated. In the context of the observed global warming the aim was to evaluate the potential of freeze-locked OM from different depositional ages to act as a substrate provider for microbial production of greenhouse gases from thawing permafrost. To assess this potential, the concentrations of free and bound acetate, which form an appropriate substrate for methanogenesis, were determined. The largest free-acetate (in pore water) and bound-acetate (organic-matrix-linked) substrate pools were present in interstadial marine isotope stage (MIS) 3 and stadial MIS 4 Yedoma permafrost deposits. In contrast, deposits from the last interglacial MIS 5e (Eemian) contained only a small pool of substrates. The Holocene (MIS 1) deposits revealed a significant bound-acetate pool, representing a future substrate potential upon release during OM degradation. Additionally, pyrolysis experiments on the OM allocated an increased aliphatic character to the MIS 3 and 4 Late Pleistocene deposits, which might indicate less decomposed and presumably more easily degradable OM. Biomarkers for past microbial communities, including those for methanogenic archaea, also showed the highest abundance during MIS 3 and 4, which indicated OM-stimulated microbial degradation and presumably greenhouse gas production during time of deposition. On a broader perspective, Arctic warming will increase and deepen permafrost thaw and favor substrate availability from older freeze-locked permafrost deposits. Thus, the Yedoma deposits especially showed a high potential for providing substrates relevant for microbial greenhouse gas production.


2016 ◽  
Vol 121 (10) ◽  
pp. 2652-2666 ◽  
Author(s):  
J. G. Stapel ◽  
L. Schirrmeister ◽  
P. P. Overduin ◽  
S. Wetterich ◽  
J. Strauss ◽  
...  

2011 ◽  
Vol 7 (2) ◽  
pp. 1195-1233 ◽  
Author(s):  
G. Trommer ◽  
M. Siccha ◽  
E. J. Rohling ◽  
K. Grant ◽  
M. T. J. van der Meer ◽  
...  

Abstract. This study investigates the response of Red Sea circulation to sea level and insolation changes during termination II and across the last interglacial, in comparison with termination I and the Holocene. Sediment cores from the central and northern part of the Red Sea were investigated by micropaleontological and geochemical proxies. The recovery of the planktonic foraminiferal fauna following high salinities during MIS 6 took place at similar sea-level stand (~50 m below present day), and with a similar species succession, as during termination I. This indicates a consistent sensitivity of the basin oceanography and the plankton ecology to sea-level forcing. Based on planktonic foraminifera, we find that increased water exchange with the Gulf of Aden especially occurred during the sea-level highstand of interglacial MIS 5e. From MIS 6 to the peak of MIS 5e, northern Red Sea SST increased from 21 °C to 25 °C, with about 3 °C of this increase taking place during termination II. Changes in planktonic foraminiferal assemblages indicate that the development of the Red Sea oceanography during MIS 5 was strongly determined by insolation and monsoon strength. The SW Monsoon summer circulation mode was enhanced during the termination, causing low productivity in northern central Red Sea core KL9, marked by high abundance of G. sacculifer, which – as in the Holocene – followed summer insolation. Core KL11 records the northern tip of the intruding intermediate water layer from the Gulf of Aden and its planktonic foraminifera fauna shows evidence for elevated productivity during the sea-level highstand in the southern central Red Sea. By the time of MIS 5 sea-level regression, elevated organic biomarker BIT values suggest denudation of soil organic matter into the Red Sea and high abundances of G. glutinata, and high reconstructed chlorophyll-a values, indicate an intensified NE Monsoon winter circulation mode. Our results imply that the amplitude of insolation fluctuations, and the resulting monsoon strength, strongly influence the Red Sea oceanography during sea-level highstands by regulating the intensity of water exchange with the Gulf of Aden. These processes are responsible for the observation that MIS 5e/d is characterized by higher primary productivity than the Holocene.


2018 ◽  
Vol 9 ◽  
Author(s):  
Kurt M. Yakimovich ◽  
Erik J. S. Emilson ◽  
Michael A. Carson ◽  
Andrew J. Tanentzap ◽  
Nathan Basiliko ◽  
...  

2014 ◽  
Vol 466-467 ◽  
pp. 663-672 ◽  
Author(s):  
Miloslav Šimek ◽  
Seija Virtanen ◽  
Asko Simojoki ◽  
Alica Chroňáková ◽  
Dana Elhottová ◽  
...  

2013 ◽  
Vol 62 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Sergey Sedov ◽  
Svetlana Sycheva ◽  
Teresa Pi ◽  
Jaime Díaz

Abstract. In vielen Löss-Paläoboden-Sequenzen der gemäßigten Breiten Europas ist das letzte Interglazial (dt.: Eem, russ.: Mikulino) durch einen Bt-Horizont (Argic horizon nach WRB) repräsentiert, der als pedologisches Resultat entsprechender bioklimatischer Bedingungen dieser Zeit gedeutet wird. Wir untersuchten mikromorphologische, physikalische/chemische (Gesamtelementzusammensetzung, Korngrößenverteilung und dithionitlösliches Eisen) und mineralogische Charakteristika im Profilabschnitt des Eem-Luvisols in Oberösterreich (Oberlaab) und des Mikulino-Albeluvisols in Zentralrussland (Alexandrov Grube nahe Kursk). Aus dem Vergleich der Paläoböden mit entsprechenden rezenten Böden ergeben sich paläoökologische und chronologische Schlussfolgerungen. Beide Profile zeigen eine Reihe von Charakteristika, die auf Verwitterung primärer Minerale und Tonminerale sowie Tonverlagerung und redoximorphe Prozesse hinweisen. Die Paläoböden zeigen jeweils eine weiter fortgeschrittene Entwicklung im Vergleich zu entsprechenden holozänen Böden, jedoch anhand unterschiedlicher pedogenetischer Merkmale. Der Eem-Luvisol in Oberösterreich weist ein höheres Maß an Tonverlagerung auf, was durch einen höheren Tongehalt und zahlreiche Toncutane im Bt-Horizont gezeigt wird. Der Mikulino-Albeluvisol in Zentralrussland ist stärker von Auswaschung und Stauwasser betroffen, was sich in tieferer und stärkerer Ansammlung von gebleichtem schluffigem Material und Tonverarmung zeigt. Wir nehmen an, dass das Ausgangsmaterial diese unterschiedliche Entwicklung hervorruft. Der russische Albeluvisol bildete sich auf Dnjepr-Löss, welcher im Vergleich zu den Riss-Lössen Oberösterreichs ärmer an leicht verwitterbaren Mineralen ist und daher eine geringere Kapazität Säure zu puffern sowie Ton neu zu bilden aufweist. Das fortgeschrittenere Entwicklungsstadium des letztinterglazialen Bodens im Vergleich zu holozänen Böden, die allgemein demselben Bodentyp entsprechen, spricht für eine längere Bodenentwicklungsphase, was mit paläobotanischen Ergebnissen in Einklang steht. Einerseits könnte der letztinterglaziale Paläoboden neben dem MIS 5e auch Teile des MIS 5d umfassen, andererseits könnte eine intensivere Paläobodenentwicklung durch das wärmere und feuchtere Paläoklima während der Interglazialphase des MIS 5e verursacht werden. Mehrere Phasen der Tonverlagerung, unterbrochen durch frostdynamische Strukturierung und Deformation sind im eemzeitlichen Bt-Horizont in Oberösterreich nachweisbar. Die noch weiter reichende Entwicklung könnte bis in noch jüngere Frühwürm-Interstadiale gereicht haben.


2019 ◽  
Vol 85 (12) ◽  
Author(s):  
Paula Dalcin Martins ◽  
Jeroen Frank ◽  
Hugh Mitchell ◽  
Lye Meng Markillie ◽  
Michael J. Wilkins

ABSTRACTAlcohols are commonly derived from the degradation of organic matter and yet are rarely measured in environmental samples. Wetlands in the Prairie Pothole Region (PPR) support extremely high methane emissions and the highest sulfate reduction rates reported to date, likely contributing to a significant proportion of organic matter mineralization in this system. While ethanol and isopropanol concentrations up to 4 to 5 mM in PPR wetland pore fluids have been implicated in sustaining these high rates of microbial activity, the mechanisms that support alcohol cycling in this ecosystem are poorly understood. We leveraged metagenomic and transcriptomic tools to identify genes, pathways, and microorganisms potentially accounting for alcohol cycling in PPR wetlands. Phylogenetic analyses revealed diverse alcohol dehydrogenases and putative substrates. Alcohol dehydrogenase and aldehyde dehydrogenase genes were included in 62 metagenome-assembled genomes (MAGs) affiliated with 16 phyla. The most frequently encoded pathway (in 30 MAGs) potentially accounting for alcohol production was aPyrococcus furiosus-like fermentation which can involve pyruvate:ferredoxin oxidoreductase (PFOR). Transcripts for 93 of 137 PFOR genes in these MAGs were detected, as well as for 158 of 243 alcohol dehydrogenase genes retrieved from these same MAGs. Mixed acid fermentation and heterofermentative lactate fermentation were also frequently encoded. Finally, we identified 19 novel putative isopropanol dehydrogenases in 15 MAGs affiliated withProteobacteria,Acidobacteria,Chloroflexi,Planctomycetes,Ignavibacteriae,Thaumarchaeota, and the candidate divisions KSB1 andRokubacteria. We conclude that diverse microorganisms may use uncommon and potentially novel pathways to produce ethanol and isopropanol in PPR wetland sediments.IMPORTANCEUnderstanding patterns of organic matter degradation in wetlands is essential for identifying the substrates and mechanisms supporting greenhouse gas production and emissions from wetlands, the main natural source of methane in the atmosphere. Alcohols are common fermentation products but are poorly studied as key intermediates in organic matter degradation in wetlands. By investigating genes, pathways, and microorganisms potentially accounting for the high concentrations of ethanol and isopropanol measured in Prairie Pothole wetland sediments, this work advanced our understanding of alcohol fermentations in wetlands linked to extremely high greenhouse gas emissions. Moreover, the novel alcohol dehydrogenases and microbial taxa potentially involved in alcohol metabolism may serve biotechnological efforts in bioengineering commercially valuable alcohol production and in the discovery of novel isopropanol producers or isopropanol fermentation pathways.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinyu Xia ◽  
Yongli Gao

AbstractMethane, along with other short-chain alkanes from some Archean metasedimentary rocks, has unique isotopic signatures that possibly reflect the generation of atmospheric greenhouse gas on early Earth. We find that alkane gases from the Kidd Creek mines in the Canadian Shield are microbial products in a Neoarchean ecosystem. The widely varied hydrogen and relatively uniform carbon isotopic compositions in the alkanes infer that the alkanes result from the biodegradation of sediment organic matter with serpentinization-derived hydrogen gas. This proposed process is supported by published geochemical data on the Kidd Creek gas, including the distribution of alkane abundances, stable isotope variations in alkanes, and CH2D2 signatures in methane. The recognition of Archean microbial methane in this work reveals a biochemical process of greenhouse gas generation before the Great Oxidation Event and improves the understanding of the carbon and hydrogen geochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document