scholarly journals What drives the latitudinal gradient in open ocean surface dissolved inorganic carbon concentration?

2018 ◽  
Author(s):  
Yingxu Wu ◽  
Mathis P. Hain ◽  
Matthew P. Humphreys ◽  
Sue Hartman ◽  
Toby Tyrrell

Abstract. Previous work has not led to a clear understanding of the causes of spatial pattern in global surface ocean DIC, which generally increases polewards. Here, we revisit this question by investigating the drivers of observed latitudinal gradients in surface salinity-normalized DIC (nDIC) using the Global Ocean Data Analysis Project Version 2 (GLODAPv2) database. We used the database to test three different hypotheses for the driver producing the observed increase in surface nDIC from low to high latitudes. These are: (1) sea surface temperature, through its effect on the CO2 system equilibrium constants, (2) salinity-related total alkalinity (TA), and (3) high latitude upwelling of DIC- and TA-rich deep waters. We find that temperature and upwelling are the two major drivers. TA effects generally oppose the observed gradient, except where higher values are introduced in upwelled waters. Temperature-driven effects explains the majority of the surface nDIC latitudinal gradient (182 out of 223 μmol kg−1 in the high-latitude Southern Ocean). Upwelling, which has not previously been considered as a major driver, additionally drives a substantial latitudinal gradient. Its immediate impact, prior to any induced air-sea CO2 exchange, is to raise Southern Ocean nDIC by 208 μmol kg−1 above the average low latitude value. However, this immediate effect is transitory. The long-term impact of upwelling (brought about by increasing TA), which would persist even if gas exchange were to return the surface ocean to the same CO2 as without upwelling, is to increase nDIC by 74 μmol kg−1 above the low latitude average.

2019 ◽  
Vol 16 (13) ◽  
pp. 2661-2681 ◽  
Author(s):  
Yingxu Wu ◽  
Mathis P. Hain ◽  
Matthew P. Humphreys ◽  
Sue Hartman ◽  
Toby Tyrrell

Abstract. Previous work has not led to a clear understanding of the causes of spatial pattern in global surface ocean dissolved inorganic carbon (DIC), which generally increases polewards. Here, we revisit this question by investigating the drivers of observed latitudinal gradients in surface salinity-normalized DIC (nDIC) using the Global Ocean Data Analysis Project version 2 (GLODAPv2) database. We used the database to test three different hypotheses for the driver producing the observed increase in surface nDIC from low to high latitudes. These are (1) sea surface temperature, through its effect on the CO2 system equilibrium constants, (2) salinity-related total alkalinity (TA), and (3) high-latitude upwelling of DIC- and TA-rich deep waters. We find that temperature and upwelling are the two major drivers. TA effects generally oppose the observed gradient, except where higher values are introduced in upwelled waters. Temperature-driven effects explain the majority of the surface nDIC latitudinal gradient (182 of the 223 µmol kg−1 increase from the tropics to the high-latitude Southern Ocean). Upwelling, which has not previously been considered as a major driver, additionally drives a substantial latitudinal gradient. Its immediate impact, prior to any induced air–sea CO2 exchange, is to raise Southern Ocean nDIC by 220 µmol kg−1 above the average low-latitude value. However, this immediate effect is transitory. The long-term impact of upwelling (brought about by increasing TA), which would persist even if gas exchange were to return the surface ocean to the same CO2 as without upwelling, is to increase nDIC by 74 µmol kg−1 above the low-latitude average.


2021 ◽  
Vol 13 (2) ◽  
pp. 777-808
Author(s):  
Luke Gregor ◽  
Nicolas Gruber

Abstract. Ocean acidification has profoundly altered the ocean's carbonate chemistry since preindustrial times, with potentially serious consequences for marine life. Yet, no long-term, global observation-based data set exists that allows us to study changes in ocean acidification for all carbonate system parameters over the last few decades. Here, we fill this gap and present a methodologically consistent global data set of all relevant surface ocean parameters, i.e., dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), pH, and the saturation state with respect to mineral CaCO3 (Ω) at a monthly resolution over the period 1985 through 2018 at a spatial resolution of 1∘×1∘. This data set, named OceanSODA-ETHZ, was created by extrapolating in time and space the surface ocean observations of pCO2 (from the Surface Ocean CO2 Atlas, SOCAT) and total alkalinity (TA; from the Global Ocean Data Analysis Project, GLODAP) using the newly developed Geospatial Random Cluster Ensemble Regression (GRaCER) method (code available at https://doi.org/10.5281/zenodo.4455354, Gregor, 2021). This method is based on a two-step (cluster-regression) approach but extends it by considering an ensemble of such cluster regressions, leading to improved robustness. Surface ocean DIC, pH, and Ω were then computed from the globally mapped pCO2 and TA using the thermodynamic equations of the carbonate system. For the open ocean, the cluster-regression method estimates pCO2 and TA with global near-zero biases and root mean squared errors of 12 µatm and 13 µmol kg−1, respectively. Taking into account also the measurement and representation errors, the total uncertainty increases to 14 µatm and 21 µmol kg−1, respectively. We assess the fidelity of the computed parameters by comparing them to direct observations from GLODAP, finding surface ocean pH and DIC global biases of near zero, as well as root mean squared errors of 0.023 and 16 µmol kg−1, respectively. These uncertainties are very comparable to those expected by propagating the total uncertainty from pCO2 and TA through the thermodynamic computations, indicating a robust and conservative assessment of the uncertainties. We illustrate the potential of this new data set by analyzing the climatological mean seasonal cycles of the different parameters of the surface ocean carbonate system, highlighting their commonalities and differences. Further, this data set provides a novel constraint on the global- and basin-scale trends in ocean acidification for all parameters. Concretely, we find for the period 1990 through 2018 global mean trends of 8.6 ± 0.1 µmol kg−1 per decade for DIC, −0.016 ± 0.000 per decade for pH, 16.5 ± 0.1 µatm per decade for pCO2, and −0.07 ± 0.00 per decade for Ω. The OceanSODA-ETHZ data can be downloaded from https://doi.org/10.25921/m5wx-ja34 (Gregor and Gruber, 2020).


2016 ◽  
Vol 12 (2) ◽  
pp. 339-375 ◽  
Author(s):  
K. Wallmann ◽  
B. Schneider ◽  
M. Sarnthein

Abstract. We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.


2019 ◽  
Vol 70 (5) ◽  
pp. 687
Author(s):  
Edgardo J. I. Pero ◽  
Paola A. Rueda Martín ◽  
María C. Reynaga

Evidence found in results of studies of latitudinal gradients of benthic macroinvertebrate diversity is variable. This study analysed how species and genus richness and the composition of caddisfly assemblages (Insecta: Trichoptera) vary in Argentinean mountain forest through a latitudinal gradient from 22 to 28°S. Qualitative and quantitative data from 20 stream sites were compared. Assemblage richness and composition were analysed by comparing linear regressions, rank–abundance (RA) curves and non-metric multidimensional scaling (nMDS). Taxonomic richness increased from high to low latitude. RA curves showed changes in assemblage composition and structure across the latitudinal gradient. The nMDS revealed that the composition of the assemblages also changed along the latitudinal gradient. The patterns are similar to those observed in plants and vertebrates from the study region. The results are of particular note because a latitudinal gradient of aquatic insect diversity has rarely been observed in a narrow range.


2013 ◽  
Vol 6 (2) ◽  
pp. 621-639
Author(s):  
U. Schuster ◽  
A. J. Watson ◽  
D. C. E. Bakker ◽  
A. M. de Boer ◽  
E. M. Jones ◽  
...  

Abstract. Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes the dissolved inorganic carbon and total alkalinity data collected along east-west sections at 55–60° N (Arctic Gateway), 24.5° N, and 24° S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, yet are not covered in this paper. Over 95% of samples taken during the 24.5° N, 24° S, and the Drake Passage sections were analysed onboard and subjected to a 1st level quality control addressing technical and analytical issues. Samples taken during Arctic Gateway were analysed and subjected to quality control back in the laboratory. Complete post-cruise 2nd level quality control was performed using cross-over analysis with historical data in the vicinity of measurements, and data are available through the Carbon Dioxide Information Analysis Center (CDIAC) and are included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2).


2021 ◽  
Author(s):  
Hongrui Zhang ◽  
Chuanlian Liu ◽  
Iván Hernández‐Almeida ◽  
Luz Maria Mejia ◽  
Heather Stoll

Abstract Periodic ~400 kyr orbital scale variations in the ocean carbon cycle, manifest in indicators of deep sea dissolution and benthic 13C, have been observed throughout the Cenozoic but the driving mechanisms remain under debate. Changes in coccolithophore productivity may change the global rain ratio (Corganic: Cinorganic fluxes from ocean into sediment) and the balance of ocean carbonate system and thereby, potentially contributing to the ~400 kyr oscillation of the marine carbon cycle. Some evidence suggests that Pleistocene coccolithophore productivity was characterized by “bloom” events of high productivity coincident with the orbital benthic 13C signal. However, there is no consensus on the mechanism responsible for bloom events nor whether they were regional or global phenomena. In this study, we investigate the timing and spatial pattern of the most recent purported coccolithophore bloom event, which occurred during the Mid-Brunhes period. We find that maximum coccolithophore productivity is diachronous, peaking in the Southern Ocean sub-Antarctic zone with eccentricity minimum (~430 ka), peaking in upwelling zones some ~28 kyr later, and finally peaking in the western tropical Pacific occurred some ~80 kyr later. Simple globally homogeneous mechanisms of driving productivity such as temperature or light duration are not consistent with this pattern. Rather, we propose a dual high and low latitude control on blooms. Coincident with eccentricity minimum, increased high-latitude diatom silica consumption lowers the Si/P, leading to coccolithophorid blooms in the Southern Ocean north of the polar front. Coincident with increasing eccentricity, stronger tropical monsoons deliver higher fluvial nutrients to surface waters, increasing total (diatom and coccolithophore) productivity. Most of the tropical and subtropical locations are influenced by both processes with varying degrees, through the effect of silicic acid leakage on tropical thermocline waters and monsoon-related nutrient supply. Moreover, we propose that the high latitude processes have intensified over the Pleistocene, extending the 405 kyr carbon cycle to about 500 kyr.


2022 ◽  
Author(s):  
Laique Merlin Djeutchouang ◽  
Nicolette Chang ◽  
Luke Gregor ◽  
Marcello Vichi ◽  
Pedro Manuel Scheel Monteiro

Abstract. The Southern Ocean is a complex system yet is sparsely sampled in both space and time. These factors raise questions about the confidence in present sampling strategies and associated machine learning (ML) reconstructions. Previous studies have not yielded a clear understanding of the origin of uncertainties and biases for the reconstructions of the partial pressure of carbon dioxide (pCO2) at the surface ocean (pCO2ocean). Here, we examine these questions by investigating the sensitivity of pCO2ocean reconstruction uncertainties and biases to a series of semi-idealized observing system simulation experiments (OSSEs) that simulate spatio-temporal sampling scales of surface ocean pCO2 in ways that are comparable to ocean CO2 observing platforms (Ship, Waveglider, Carbon-float, Saildrone). These experiments sampled a high spatial resolution (±10 km) coupled physical and biogeochemical model (NEMO-PISCES) within a sub-domain representative of the Sub-Antarctic and Polar Frontal Zones in the Southern Ocean. The reconstructions were done using a two-member ensemble approach that consisted of two machine learning (ML) methods, (1) the feed-forward neural network and (2) the gradient boosting machines. With the baseline observations being from the simulated ships mimicking observations from the Surface Ocean CO2 Atlas (SOCAT), we applied to each of the scale-sampling simulation scenarios the two-member ensemble method ML2, to reconstruct the full sub-domain pCO2ocean and assess the reconstruction skill through a statistical comparison of reconstructed pCO2ocean and model domain mean. The analysis shows that uncertainties and biases for pCO2ocean reconstructions are very sensitive to both the spatial and temporal scales of pCO2 sampling in the model domain. The four key findings from our investigation are the following: (1) improving ML-based pCO2 reconstructions in the Southern Ocean requires simultaneous high resolution observations of the meridional and the seasonal cycle (< 3 days) of pCO2ocean; (2) Saildrones stand out as the optimal platforms to simultaneously address these requirements; (3) Wavegliders with hourly/daily resolution in pseudo-mooring mode improve on Carbon-floats (10-day period), which suggests that sampling aliases from the low temporal frequency have a greater negative impact on their uncertainties, biases and reconstruction means; and (4) the present summer seasonal sampling biases in SOCAT data in the Southern Ocean may be behind a significant winter bias in the reconstructed seasonal cycle of pCO2ocean.


Stratigraphy ◽  
2020 ◽  
pp. 213-278
Author(s):  
Christopher J. Hollis ◽  
Kristina M. Pascher ◽  
Annika Sanfilippo ◽  
Akiko Nishimura ◽  
Shin-ichi Kamikuri ◽  
...  

ABSTRACT: We have integrated southern mid- and high-latitude (Austral) radiolarian biozonations with the well-established low-latitude (Tropical) biozonation using new biostratigraphic and magnetostratigraphic constraints on radiolarian bioevents in the Southwest (SW) Pacific, Southeast (SE) Indian and Northwest (NW) Atlantic Oceans. Our primary study sites include Mead Stream, New Zealand, and DSDP Sites 277 and 207 (SW Pacific; 45-54 degrees South at 50 Ma), ODP Site 752 and IODP Site U1514 (SE Indian; 50 degrees South at 50 Ma), and IODP Site U1403 (NW Atlantic; 30 degrees North at 50 Ma). The Austral and Tropical zonal schemes have been calibrated to GPTS2020. We introduce new zonal codes to rectify current confusion surrounding use of "RP" zones. Austral zones are codified as "RPA" zones and Tropical zones are codified as "RPT". Our study finds that radiolarian datums are generally isochronous within the mid-latitude SW Pacific and SE Indian Oceans from Paleocene to middle Eocene and are also isochronous in the high-latitude Southern Ocean (>60 degrees South paleolatitude) over the late middle Eocene to Oligocene interval of overlap. Older radiolarian assemblages are not known from the Southern Ocean. Early to middle Paleocene radiolarian assemblages in the SE Indian Ocean (zones RPA2-RPA5) differ from coeval SW Pacific assemblages by lacking significant numbers of Cretaceous survivors. The reasons for this difference are uncertain. Although the late Paleocene to Eocene radiolarian assemblages in the SW Pacific and SE Indian Ocean lack many low-latitude index species, the timing of Indian Ocean bioevents agrees better with low-latitude biozonations than the SW Pacific, suggesting a stronger connection with low-latitude watermasses. Assemblages from NW Atlantic IODP Site U1403 include numerous low-latitude index species and can be correlated with zones RPT6-RPT13. Many of the species transitions in biostratigraphically important Eocene lineages, however, occur later than in lower latitudes.


2017 ◽  
Author(s):  
Amanda R. Fay ◽  
Nicole S. Lovenduski ◽  
Galen A. McKinley ◽  
David R. Munro ◽  
Colm Sweeney ◽  
...  

Abstract. The Southern Ocean is highly under-sampled for the purpose of assessing total carbon uptake and its variability. Since this region dominates the mean global ocean sink for anthropogenic carbon, understanding temporal change is critical. Underway measurements of pCO2 collected as part of the Drake Passage Time-series (DPT) program that began in 2002 inform our understanding of seasonally changing air-sea gradients in pCO2, and by inference the carbon flux in this region. Here, we utilize all available pCO2 observations collected in the subpolar Southern Ocean to evaluate how the seasonal cycle, interannual variability, and long-term trends in surface ocean pCO2 in the Drake Passage region compare to that of the broader subpolar Southern Ocean. Our results indicate that the Drake Passage is representative of the broader region in both seasonality and long term pCO2 trends shown through the agreement of timing and amplitude of seasonal cycles as well as trend magnitudes. The high temporal density of sampling by the DPT is critical to constraining estimates of the seasonal cycle of surface pCO2 in this region, as winter data remain sparse in areas outside of the Drake Passage. From 2002–2015, data show that carbon uptake has strengthened with surface ocean pCO2 trends less than the global atmospheric trend in the Drake Passage and the broader subpolar Southern Ocean. Analysis of spatial correlation shows Drake Passage pCO2 to be representative of pCO2 and its variability up to several hundred kilometers upstream of the region. We also compare DPT data from 2016 and early 2017 to contemporaneous pCO2 estimates from autonomous biogeochemical floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) so as to highlight the opportunity for evaluating data collected on autonomous observational platforms. Though SOCCOM floats sparsely sample the Drake Passage region for 2016–2017, their pCO2 estimates typically fall within the range of underway observations. Going forward, continuation of the Drake Passage Time-series will reduce uncertainties in Southern Ocean carbon uptake seasonality, variability, and trends, and provide an invaluable independent dataset for post-deployment quality control of sensors on autonomous floats. Together, these datasets will vastly increase our ability to monitor change in the ocean carbon sink.


2020 ◽  
Author(s):  
Luke Gregor ◽  
Nicolas Gruber

Abstract. Ocean acidification has altered the ocean's carbonate chemistry profoundly since preindustrial times, with potentially serious consequences for marine life. Yet, no long-term global observation-based data set exists that permits to study changes in ocean acidification for all carbonate system parameters over the last few decades. Here, we fill this gap and present a methodologically consistent global data set of all relevant surface ocean parameters, i.e., dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), pH, and the saturation state with respect to mineral CaCO3 (Ω) at monthly resolution over the period 1985 through 2018 at a spatial resolution of 1 × 1°. This data set, named OceanSODA-ETHZ, was created by extrapolating in time and space the surface ocean observations of pCO2 (from the Surface Ocean CO2 ATlas (SOCAT)) and total alkalinity (TA, from the Global Ocean Data Analysis Project (GLODAP)) using the newly developed Geospatial Random Cluster Ensemble Regression (GRaCER) method. This method is based on a two-step (cluster-regression) approach, but extends it by considering an ensemble of such cluster-regressions, leading to higher robustness. Surface ocean DIC, pH, and Ω were then computed from the globally mapped pCO2 and TA using the thermodynamic equations of the carbonate system. For the open ocean, the cluster regression method estimates pCO2 and TA with global near-zero biases and root mean squared errors of 12 µatm and 13 µmol kg−1, respectively. Taking into account also the measurement and representation errors, the total error increases to 14 µatm and 21 µmol kg−1, respectively. We assess the fidelity of the computed parameters by comparing them to direct observations from GLODAP, finding surface ocean pH and DIC global biases of near zero, and root mean squared errors of 0.023 and 16 µmol kg−1, respectively. These errors are very comparable to those expected by propagating the total errors from pCO2 and TA through the thermodynamic computations, indicating a robust and conservative assessment of the errors. We illustrate the potential of this new dataset by analyzing the climatological mean seasonal cycles of the different parameters of the surface ocean carbonate system, highlighting their commonalities and differences. The OceanSODA-ETHZ data can be downloaded from https://doi.org/10.25921/m5wx-ja34 (Gregor and Gruber, 2020).


Sign in / Sign up

Export Citation Format

Share Document