scholarly journals Inferring particle dynamics in the Mediterranean Sea from in-situ pump POC and chloropigment data using Bayesian statistics

Author(s):  
Weilei Wang ◽  
Cindy Lee ◽  
Francois Primeau

Abstract. Chloropigment and particulate organic carbon (POC) concentration data collected using in-situ large-volume pumps during the MedFlux project in the Mediterranean Sea in May 2005 provided an opportunity to estimate rate constants that control the fate of particles and specifically chloropigments in the water column. Additionally, comparisons to thorium and chloropigment data from settling-velocity (SV) sediment traps at the same site enabled us to distinguish between the influence of the sampling method used vs. the tracer used on particle dynamic rate constants. Here we introduce a Bayesian statistical inversion method that combines the data with a new box model and has the capacity to infer rate constants for POC respiration/dissolution, chlorophyll and phaeopigment degradation, and particle aggregation and disaggregation. The estimated small-particle (1–70 μm) POC respiration rate constant was 1.25+0.55−0.38 yr−1 (0.80 yr). For this data set, the rate constants for chlorophyll (Chl) degradation to phaeopigments and phaeopigment respiration were not well constrained. The estimated aggregation and disaggregation rate constants were 7.65+3.35−2.33 (0.13 yr) and 106.09+39.13−28.59 yr−1 (0.01 yr), respectively, which indicates that particle aggregation and disaggregation were extensive at the studied depths (125–750 m) in May after the spring bloom had ended and flux was low.

2021 ◽  
Vol 13 (1) ◽  
pp. 85-97
Author(s):  
Ioannis Moutzouris-Sidiris ◽  
Konstantinos Topouzelis

Abstract The objective of this study is to evaluate the efficiency of two well-known algorithms (Ocean Colour 4 for MERIS [OC4Me] and neural net [NN]) used in the calculation of chlorophyll-a (Chl-a) from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) compared to in situ measurements covering the Mediterranean Sea. In situ data set, obtained from the Copernicus Marine Environmental Monitoring Service (CMEMS) and more specifically from the data set with the title INSITU_MED_NRT_OBSERVATIONS_013_035, and Chl-a values at different depths were extracted. The concentration of Chl-a at a penetration depth was calculated. Then, water was classified into two categories, Case-1 and Case-2. For Case-2 waters, the OC4Me presents a moderate correlation with the in situ data for a time window of 0–2 h. In contrast with the NN algorithm, where very weak correlations were calculated, lower values of the statistical index of Bias for Case-1 waters were calculated for the OC4Me algorithm. Higher values of Pearson correlation were calculated (r > 0.5) for OC4Me algorithm than NN. OC4Me performed better than NN.


2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


2008 ◽  
Vol 112 (8) ◽  
pp. 3300-3313 ◽  
Author(s):  
Vittorio Barale ◽  
Jean-Michel Jaquet ◽  
Mapathé Ndiaye

2011 ◽  
Vol 8 (5) ◽  
pp. 8961-8998 ◽  
Author(s):  
Y. Cuypers ◽  
P. Bouruet-Aubertot ◽  
C. Marec ◽  
J.-L. Fuda

Abstract. One main purpose of BOUM experiment was to give evidence of the possible impact of submesoscale dynamics on biogeochemical cycles. To this aim physical as well as biogeochemical data were collected along a zonal transect through the western and eastern basins. Along this transect 3 day fixed point stations were performed within anticyclonic eddies during which microstructure measurements were collected over the first 100 m. We focus here on the characterization of turbulent mixing induced by internal wave breaking. The analysis of microstructure measurements revealed a high level of turbulence in the seasonal pycnocline and a moderate level below with energy dissipation mean values of the order of 10−6 W kg−1 and 10−8 W kg−1, respectively. Fine-scale parameterizations developed to mimic energy dissipation produced by internal wavebreaking were then tested against these direct measurements. Once validated a parameterization has been applied to infer energy dissipation and mixing over the whole data set, thus providing an overview over a latitudinal section of the Mediterranean sea. The results evidence a significant increase of dissipation at the top and base of eddies associated with strong near inertial waves. Vertical turbulent diffusivity is increased both in these regions and in the weakly stratified eddy core.


2018 ◽  
Vol 10 (4) ◽  
pp. 1829-1842 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long time series. It is produced from a new high-resolution climatology of temperature and salinity on a 1∕8∘ regular grid based on historical high-quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The two successive periods are chosen according to the standard WMO climate normals. The spatial patterns of heat and salt content shifts demonstrate that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salinification since 1950 that has accelerated during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle, indicating that the natural large-scale atmospheric variability could be superimposed onto the warming trend. This product is an observation-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in situ observations averaged over decades in order to smooth the decadal variability and reveal the long-term trends. It can provide a valuable contribution to the modellers' community, next to the satellite-based products, and serve as a baseline for the evaluation of climate-change model simulations, thus contributing to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available in netCDF at the following sources: annual and seasonal T∕S anomalies (https://doi.org/10.5281/zenodo.1408832), annual and seasonal T∕S vertical averaged anomalies (https://doi.org/10.5281/zenodo.1408929), annual and seasonal areal density of OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408877), annual and seasonal linear trends of T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408917), annual and seasonal time series of T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1411398), and differences of two 30-year averages of annual and seasonal T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408903).


2021 ◽  
Vol 12 ◽  
Author(s):  
Annika Vaksmaa ◽  
Katrin Knittel ◽  
Alejandro Abdala Asbun ◽  
Maaike Goudriaan ◽  
Andreas Ellrott ◽  
...  

Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.


2021 ◽  
Author(s):  
Romain Escudier ◽  
Emanuela Clementi ◽  
Mohamed Omar ◽  
Andrea Cipollone ◽  
Jenny Pistoia ◽  
...  

<p>In order to be able to predict the future ocean climate and weather, it is crucial to understand what happened in the past and the mechanisms responsible for the ocean variability. This is particularly true in a complex area such as the Mediterranean Sea with diverse dynamics such as deep convection and thermohaline circulation or coastal hydrodynamics. To this end, effective tools are reanalyses or reconstructions of the past ocean state. </p><p>Here we present a new physical reanalysis of the Mediterranean Sea at high resolution, developed in the Copernicus Marine Environment Monitoring Service (CMEMS) framework. The hydrodynamic model is based on the Nucleus for European Modelling of the Ocean (NEMO) combined with a variational data assimilation scheme (OceanVar).</p><p>The model has a horizontal resolution of 1/24<strong>°</strong> and 141 vertical z* levels and provides daily and monthly 3D values of temperature, salinity, sea level and currents. Hourly ECMWF ERA-5 atmospheric fields force the model and daily boundary conditions in the Atlantic are taken from the global CMCC C-GLORS reanalysis. 39 rivers model the freshwater input to the basin plus the Dardanelles. The reanalysis covers 33-years, initialized from SeaDataNet climatology in January 1985, getting to a nominal state after a two-years spin-up and ending in 2019. In-situ data from CTD, ARGO floats and XBT are assimilated into the model in combination with satellite altimetry data.</p><p>This reanalysis has been validated and assessed through comparison to in-situ and satellite observations as well as literature climatologies. The results show an overall improvement of the skill and a better representation of the main dynamics of the region compared to the previous, lower resolution (1/16<strong>°</strong>) reanalysis. Temperature and salinity RMSE is decreased by respectively 12% and 20%. The deeper biases in salinity of the previous version are corrected and the new reanalysis present a better representation of the deep convection in the Gulf of Lion. Climate signals show continuous increase of the temperature due to climate change but also in salinity.</p><p>The new reanalysis will allow the study of physical processes at multi-scales, from the large scale to the transient small mesoscale structures.</p>


2021 ◽  
Author(s):  
Mahmud Hasan Ghani ◽  
Nadia Pinardi ◽  
Francesco Trotta

<p>The focus of this study is to analyze the probability distribution functions of model wind data over the Mediterranean Sea. The atmospheric wind data set is composed by ECWMF analyses for the period 2010-2019. A single grid point statistical method is applied to the Mediterranean Sea for both wind components and amplitude. The pdf (probability distribution function) of the wind components is Gaussian while the amplitude is Weibull. In addition, sensitivity experiments are done to compare the Weibull with the Exponential Weibull pdfs, showing almost identical patterns for both distributions. The use of two parameters Weibull distribution is widely accepted to represent the statistical structure of surface wind, while three parameters Exponential Weibull distribution mostly refers to extreme events. The pdf parameter distribution in the Mediterranean Sea is shown for the first time to be associated with specific wind structures such as Mistral and Etesian winds. This study confirms the previous results from Chu (2009) for oceanic currents and by Drobinski (2015) for wind station data, both cases showing the two parameter Gaussian pdf for wind components and Weibull pdf for wind amplitude. The knowledge of these distributions will help to improve the ensemble ocean forecast as for the setting of initial conditions of ocean forecasts where atmospheric forcing is crucial to quantify the forecast errors.</p>


2016 ◽  
Vol 74 (4) ◽  
pp. 1074-1082 ◽  
Author(s):  
Maoz Fine ◽  
Rami Tsadok ◽  
Dalit Meron ◽  
Stephanie Cohen ◽  
Marco Milazzo

Vermetid reefs in the Mediterranean Sea are increasingly affected by both anthropogenic actions and global climate change, which are putting this coastal ecosystem at risk. The main species involved in building these reefs are two species of intertidal vermetid gastropods and the crustose calcareous alga, Neogoniolithon brassica-florida, which cements the gastropod shells and thus solidifying the reef edges. In the present study, we examined the pattern of distribution in the field and the environmental sensitivity (thermal tolerance, resilience to low pH, high light intensity and desiccation) of N. brassica-florida along the coasts of Sicily and Israel by means of chlorophyll fluorescence and total alkalinity measurements in situ and in the laboratory. Tidal regimes did not affect photosynthesis of N. brassica-florida but light intensity in the intertidal did. Sensitivity to increased light intensity was amplified by elevated temperature and reduced pH. Winter temperature above 16 °C caused a decrease in the photosynthetic performance of photo-system II. Similarly, a decrease in pH resulted in decreased maximum photosynthetic yield and electron transport rate. Calcification was significantly lower at pH 7.9 as compared with ambient (8.1) pH. In fact, dissolution at pH 7.9 at night was higher than net calcification during the day, suggesting that N. brassica-florida may not be able to contribute to reef accretion under the levels of seawater warming and ocean acidification projected by the end of this century.


Sign in / Sign up

Export Citation Format

Share Document