scholarly journals Particulate biogenic barium tracer of mesopelagic carbon remineralization in the Mediterranean Sea (PEACETIME project)

2020 ◽  
Author(s):  
Stéphanie H. M. Jacquet ◽  
Christian Tamburini ◽  
Marc Garel ◽  
Aurélie Dufour ◽  
France Van-Vambeke ◽  
...  

Abstract. We report on the sub-basins variability of particulate organic carbon (POC) remineralization in the central and western Mediterranean Sea during a late spring period (PEACETIME cruise). POC remineralization rates (MR) were estimated using the excess non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters (100–1000 m) and compared with prokaryotic heterotrophic production (PHP). MR range from 25 ± 2 to 306 ± 70 mg C m−2 d−1. Results reveal larger MR processes in the Algerian (ALG) basin compared to the Tyrrhenian (TYR) and Ionian (ION) basins. Baxs inventories and PHP also indicates that significant remineralization occurs over the whole mesopelagic layers in the ALG basin in contrast to the ION and TYR basins where remineralization is mainly located in the upper 500 m horizon. We propose that this may be due to particle injection pumps likely driven by strong winter convection in the Western basin of the Mediterranean Sea. This implies significant differences in the remineralization length scale of POC in the central Mediterranean Sea relative to the western region.

2010 ◽  
Vol 7 (6) ◽  
pp. 8779-8816 ◽  
Author(s):  
M. Le Moal ◽  
H. Collin ◽  
I. C. Biegala

Abstract. The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has been formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH phylogenies. These genetic analyses were possible owning to the development of a new PCR protocol adapted for scarce microorganisms (0.2 cell ml−1). Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized with Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml−1 of Richelia were detected in the eastern basin, while small (0.7–1.5 μm) and large (2.5–3.2 μm) Nitro821-targeted cells were recovered at all stations and averaged 3.5 cell ml−1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. Surprisingly, the larger hybridized cells were not belonging to UCYN-B and C but to plastids of picoeukaryote. NifH gene was not recovered among picoeukaryotes, when rhizobia sequences, including the ones of Bradyrhizobia, were dominating nifH clone libraries from picoplanktonic size fractions. Few sequences of γ-proteobacteria were also detected in central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles and photosynthetic activity to acquire carbon for sustaining diazotrophy. Among UCYN further work will be necessary to understand their suggested role in plastid evolution.


2011 ◽  
Vol 8 (3) ◽  
pp. 827-840 ◽  
Author(s):  
M. Le Moal ◽  
H. Collin ◽  
I. C. Biegala

Abstract. The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study, we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH genes phylogenies. These genetic analyses were possible owing to the development of a new PCR protocol adapted to scarce microorganisms that can detect as few as 1 cell ml−1 in cultures. Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized to the Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml−1 of Richelia were detected in the eastern basin, while small (0.7–1.5 μm) and large (2.5–3.2 μm) Nitro821-targeted cells were recovered at all stations with a mean concentration of 3.5 cell ml−1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. In the central and the eastern Mediterranean Sea no 16S rDNA and nifH sequence from UCYN was obtained as cells concentration were close to, or below PCR detection limit. Bradyrhizobium sequences dominated nifH clone libraries from picoplanktonic size fractions. A few sequences of γ-proteobacteria were also detected in the central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles, and/or photosynthetic activity, to acquire carbon for sustaining diazotrophy.


2020 ◽  
Author(s):  
Nathalie Combourieu-Nebout ◽  
Vincent Coussin ◽  
Yannick Miras ◽  
Aurélie Penaud ◽  
Sandra Picard Casal ◽  
...  

<p>The 4.2 ka event is considered a key-period of the Mediterranean climate because of its potential impact on human societies over the Holocene. Numerous records provide a detailed description on its expression in continental and marine archives (e.g. Bini et al, 2019). They generally indicate cold/dry conditions, although not uniformly expressed across the Mediterranean, and summer dryness reinforced by dry winters. Palynological data from the central Mediterranean basin show a complex response of the vegetation during this climatic event that seems to be more pronounced in the southern sites.</p><p>In this study, we developed a multidisciplinary approach on two sequences collected in the Western Mediterranean Sea to insight the response of the W-Mediterranean forest along a North-South transect. The two marine records, KSGC-31 (43°N - 3°17.9’E; 60 m water depth, Gulf of Lion margin at 20 km from the coast) and MD04-2801 (36°30.99’ N - 0°30.03’ W, 2067 m water depth, 12km from the Algerian coast) were used to document regional changes in the basin between 5 and 3 kyr BP at a multi-decadal to centennial scale temporal resolution.</p><p>Information derived from palynological (pollen, spores, dinocysts, microalgae and non-pollen palynomorphs) and marine proxy data (alkenone-derived SSTs, isotopes...) are combined to evaluate environmental and hydrological changes and how this relate to human activities. Our findings highlight coherent climatic patterns and time-lags along a South-North transect in the Western Mediterranean during the establishment of droughts. They also reveal the first indications of human impact in the two areas. Overall, our study shows the effectively of our approach based on cross-analysis of continental palynological and marine evidences to decipher the chronology of sequence of events embedded in multiproxy records.</p><p>Bini, M., Zanchetta, G., Perşoiu, A., et al. : The 4.2 ka BP Event in the Mediterranean region: an overview, Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, 2019.</p>


2020 ◽  
Author(s):  
Christian Gorini ◽  
Romain Pellen ◽  
jean-loup Rubino ◽  
Benoit Didier ◽  
Lucien Montader ◽  
...  

<p>The partial sequestration of the Mediterranean Sea from adjacent oceans at the end of the Miocene caused an evaporation surfeit that increased the water salinity above the seafloor of the deep basins and peripheral basins. As a result, an up to 2-3 km-thick sequence of evaporites was deposited in the center of the deep basins. This coincided with the concomitantly intense subaerial erosion of the adjacent margins and important Mass transport deposit events all around the peri- Mediterranean slopes. The volume of evaporites deposited in the deep basins implies a periodic connection with the world oceans concomitant with a huge evaporation during all the MSC. “Deep basins” refers to their position in the deep central parts of the extant Messinian basins in the western basin, the central basins (Ionian) and the eastern basins. The configuration of these basins and the distribution and thickness of the evaporites were very different 6 Myr ago due to the Africa Europe convergence. Evaporites deposition at the edge of the evaporites basins was affected by the geodynamic nature of the margins: Tertiary or Mesozoic passive or transform margins (North Africa), strike slip margins (northern and eastern Levant), convergent margins in the North of the East Mediterranean with evaporites subducted or stacked in a fore arc position. We propose a kinematic reconstruction of the central Mediterranean sea to discuss the connections between the Atlantic waters and the eastern Mediterranean Sea. In this presentation, we show that: (1) There is no opposition between the deposition of the first deep water evaporites and a sea level fall of more than 1000 m. (2) by a threshold effect the eastern Mediterranean could have been more restricted than the western Mediterranean during the phase 1 of the MSC, which could explain the two major incisions observed in the Nile delta (3). At the end of the MSC, this threshold effect could have been maximal with an accommodation space almost filled up and a bathymetry probably not exceeding 50 m in the western Mediterranean and in the Central Mediterranean with deposition of K and Mg evaporates, and almost zero in the Eastern Mediterranean as shown by the fluvial network developed on a wide-spread erosional surface on top of the Levant basin salt. (4) The Messinian salinity crisis (MSC) ended with the rapid re-flooding of the Mediterranean sea. A two-step flooding in the western Mediterranean could find its origin in this threshold effect.</p>


2015 ◽  
Author(s):  
Jasmine Ferrario ◽  
Agnese Marchini ◽  
Martina Marić ◽  
Dan Minchin ◽  
Anna Occhipinti-Ambrogi

The Pacific cheilostome bryozoan Celleporaria brunnea (Hincks, 1884), a non-indigenous species already known for the Mediterranean Sea, was recorded in 2013-2014 from nine Italian port localities (Genoa, Santa Margherita Ligure, La Spezia, Leghorn, Viareggio, Olbia, Porto Rotondo, Porto Torres and Castelsardo) in the North-western Mediterranean Sea; in 2014 it was also found for the first time in the Adriatic Sea, in the marina “Kornati”, Biograd na Moru (Croatia). In Italy, specimens of C. brunnea were found in 44 out of 105 samples (48% from harbour sites ad 52% from marinas). These data confirm and update the distribution of C. brunnea in the Mediterranean Sea, and provide evidence that recreational boating is a vector responsible for the successful spread of this species. Previous literature data have shown the existence of differences in orifice and interzooidal avicularia length and width among different localities of the invaded range of C. brunnea. Therefore, measurements of orifice and avicularia were assessed for respectively 30 zooids and 8 to 30 interzooidal avicularia for both Italian and Croatian localities, and compared with literature data, in order to verify the existence of differences in the populations of C. brunnea that could reflect the geographic pattern of its invasion range. Our data show high variability of orifice measures among and within localities: zooids with broader than long orifice coexisted with others displaying longer than broad orifice, or similar values for both length and width. The morphological variation of C. brunnea in these localities, and above all the large variability of samples within single localities or even within colonies poses questions on the reliability of such morphometric characters for inter and intraspecific evaluations.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


2019 ◽  
Vol 19 (17) ◽  
pp. 11123-11142 ◽  
Author(s):  
Marc D. Mallet ◽  
Barbara D'Anna ◽  
Aurélie Même ◽  
Maria Chiara Bove ◽  
Federico Cassola ◽  
...  

Abstract. Measurements of aerosol composition and size distributions were taken during the summer of 2013 at the remote island of Lampedusa in the southern central Mediterranean Sea. These measurements were part of the ChArMEx/ADRIMED (Chemistry and Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate) framework and took place during Special Observation Period 1a (SOP-1a) from 11 June to 5 July 2013. From compact time-of-flight aerosol mass spectrometer (cToF-AMS) measurements in the size range below 1 µm in aerodynamic diameter (PM1), particles were predominately comprised of ammonium and sulfate. On average, ammonium sulfate contributed 63 % to the non-refractory PM1 mass, followed by organics (33 %). The organic aerosol was generally very highly oxidized (f44 values were typically between 0.25 and 0.26). The contribution of ammonium sulfate was generally higher than organic aerosol in comparison to measurements taken in the western Mediterranean but is consistent with studies undertaken in the eastern basin. Source apportionment of organics using a statistical (positive matrix factorization) model revealed four factors: a hydrocarbon-like organic aerosol (HOA), a methanesulfonic-acid-related oxygenated organic aerosol (MSA-OOA), a more oxidized oxygenated organic aerosol (MO-OOA) and a less oxidized oxygenated organic aerosol (LO-OOA). The MO-OOA was the dominant factor for most of the campaign (53 % of the PM1 OA mass). It was well correlated with SO42-, highly oxidized and generally more dominant during easterly air masses originating from the eastern Mediterranean and central Europe. The LO-OOA factor had a very similar composition to the MO-OOA factor but was more prevalent during westerly winds, with air masses originating from the Atlantic Ocean, the western Mediterranean and at high altitudes over France and Spain from mistral winds. The MSA-OOA factor contributed an average 12 % to the PM1 OA and was more dominant during the mistral winds. The HOA, representing observed primary organic aerosol, only contributed 8 % of the average PM1 OA during the campaign. Even though Lampedusa is one of the most remote sites in the Mediterranean, PM1 concentrations (10 ± 5 µg m−3) were comparable to those observed in coastal cities and sites closer to continental Europe. Cleaner conditions corresponded to higher wind speeds. Nucleation and growth of new aerosol particles was observed during periods of north-westerly winds. From a climatology analysis from 1999 to 2012, these periods were much more prevalent during the measurement campaign than during the preceding 13 years. These results support previous findings that highlight the importance of different large-scale synoptic conditions in determining the regional and local aerosol composition and oxidation and also suggest that a non-polluted surface atmosphere over the Mediterranean is rare.


2017 ◽  
Vol 98 (5) ◽  
pp. 1003-1009 ◽  
Author(s):  
Luca Bittau ◽  
Mattia Leone ◽  
Adrien Gannier ◽  
Alexandre Gannier ◽  
Renata Manconi

Sowerby's beaked whale (Mesoplodon bidens) was previously known in the Mediterranean Sea from a single live stranding of two individuals in the French Riviera. We report here on two live sightings in the western Mediterranean, central-western Tyrrhenian Sea off eastern Corsica (Montecristo Trough) and off eastern Sardinia (Caprera Canyon) in 2010 and 2012, respectively. In both cases single individuals, possibly the same individual, occurred within groups of Cuvier's beaked whales (Ziphius cavirostris) suggesting inter-specific interactions. Based on our close observations of mixed-species groups of Sowerby's and Cuvier's beaked whales, we hypothesize that some previous long-distance sightings of beaked whales in the Mediterranean may not be reliably attributed to Z. cavirostris. The present sightings and previous live stranding indicate that the western Mediterranean Sea is the easternmost marginal area of M. bidens within the North Atlantic geographic range. Notes on behaviour are also provided.


2013 ◽  
Vol 71 (3) ◽  
pp. 510-518 ◽  
Author(s):  
Jean-Marc Fromentin ◽  
Daniel Lopuszanski

Abstract This study presents the results of an electronic tagging programme on mature Atlantic bluefin tuna (ABFT) that has been conducted since 2007 offshore of the French Mediterranean Coast. The spatial distributions of ABFT showed little year-to-year variation and the fish concentrated in a small area of the central northwestern Mediterranean, where they may stay for several months. The individual tracks display sinuous trajectories in this area, indicating the possibility of feeding behaviour. No fish went out to the North Atlantic, but several fish displayed some migration to the southern western Mediterranean Sea during winter and the central Mediterranean during the spawning season. The homing behaviour of one fish after a full year as well as the back and forth of several fish further indicates that this restricted feeding area is probably persistent from year to year. We hypothesize that this area could result from local enrichment due to permanent mesoscale oceanographic features related to the North Mediterranean Current and the North Balearic front. The option of a spatial management, through marine protected areas, for a highly migratory species, such as ABFT, thus deserves more careful consideration because those species displayed complex spatial dynamics (e.g. homing), and population structure (e.g. several subpopulations of different sizes).


Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Pascal Conan ◽  
Pierre Testor ◽  
Claude Estournel ◽  
Fabrizio D'Ortenzio ◽  
Xavier Durrieu de Madron

A new special issue of JGR: Oceans and JGR: Atmospheres presents new insights into the dynamics of dense water formation in the western Mediterranean Sea and its biogeochemical consequences.


Sign in / Sign up

Export Citation Format

Share Document