scholarly journals Estimating maximum mineral associated organic carbon in UK grasslands

2020 ◽  
Author(s):  
Kirsty C. Paterson ◽  
Joanna M. Cloy ◽  
Robert M. Rees ◽  
Elizabeth M. Baggs ◽  
Hugh Martineau ◽  
...  

Abstract. Soil organic carbon (SOC) sequestration across agroecosystems worldwide can contribute to mitigate the effects of climate change by reducing levels of atmospheric CO2. Mineral associated organic carbon (MAOC) is considered an important long-term store of SOC and the saturation deficit (difference between measured MAOC and estimated maximum MAOC) is frequently used to assess SOC sequestration potential following the linear regression equation developed by Hassink (1997). However, this approach is often taken without any assessment of the fit of the equation to the soils being studied. The statistical limitations of linear regression have previously been noted, giving rise to the proposed use of boundary line (BL) analysis and quantile regression (QR) to provide more robust estimates of maximum SOC stabilisation. The objectives of this work were to assess the suitability of the Hassink (1997) equation to estimate maximum MAOC in UK grassland soils of varying sward ages and to evaluate the linear regression, BL and QR methods to estimate maximum MAOC. A chronosequence of 10 grasslands was sampled, in order to assess the relationship between sward age (time since last reseeding event) and current and predicted maximum MAOC. Significantly different regression equations show that the Hassink (1997) equation does not accurately reflect maximum MAOC in UK grasslands when determined using the proportion of fine soil fraction and current MAOC. The QR estimate of maximum SOC stabilisation was almost double that of linear regression and BL analysis (0.89 ± 0.074, 0.43 ± 0.017 and 0.57 ± 0.052 g C kg−1 soil, respectively). Sward age had an inconsistent effect on the measured variables and potential maximum MAOC. MAOC across the grasslands made up 4.5 to 55.9 % of total SOC, implying that there may be either high potential for additional C sequestration in the mineral fraction of these soils, or stabilisation in aggregates is predominant in these grassland soils. This work highlights the need to ensure that methods used to predict maximum MAOC reflect the soil in situ, resulting in more accurate assessments of carbon sequestration potential.

2021 ◽  
Vol 18 (2) ◽  
pp. 605-620
Author(s):  
Kirsty C. Paterson ◽  
Joanna M. Cloy ◽  
Robert M. Rees ◽  
Elizabeth M. Baggs ◽  
Hugh Martineau ◽  
...  

Abstract. Soil organic carbon (SOC) sequestration across agroecosystems worldwide can contribute to mitigate the effects of climate change by reducing levels of atmospheric CO2. Stabilisation of organic carbon (OC) in the fine soil fraction (< 20 µm) is considered an important long-term store of SOC, and the saturation deficit (difference between measured OC and estimated maximum OC in the fine fraction) is frequently used to assess SOC sequestration potential following the linear regression equation developed by Hassink (1997). However, this approach is often taken without any assessment of the fit of the equation to the soils being studied. The statistical limitations of linear regression have previously been noted, giving rise to the proposed use of boundary line (BL) analysis and quantile regression (QR) to provide more robust estimates of maximum SOC stabilisation. The objectives of this work were to assess the suitability of the Hassink (1997) equation to estimate maximum fine-fraction OC in UK grassland soils of varying sward ages and to evaluate the linear regression, boundary line and quantile regression methods to estimate maximum fine-fraction OC. A chronosequence of 10 grasslands was sampled, in order to assess the relationship between sward age (time since the last reseeding event) and the measured and predicted maximum fine-fraction OC. Significantly different regression equations show that the Hassink (1997) equation does not accurately reflect maximum fine-fraction OC in UK grasslands when determined using the proportion of the fine soil fraction (< 20 µm, %) and measured fine-fraction OC (g C per kg soil). The QR estimate of maximum SOC stabilisation was almost double that of the linear regression and BL analysis (0.89 ± 0.074, 0.43 ± 0.017 and 0.57 ± 0.052 g C per kg soil, respectively). Sward age had an inconsistent effect on the measured variables and potential maximum fine-fraction OC. Fine-fraction OC across the grasslands made up 4.5 % to 55.9 % of total SOC, implying that there may be either high potential for additional C sequestration in the fine fraction of these soils or that protection in aggregates is predominant in these grassland soils. This work highlights the need to ensure that methods used to predict maximum fine-fraction OC reflect the soil in situ, resulting in more accurate assessments of carbon sequestration potential.


2021 ◽  
Author(s):  
Thomas Guillaume ◽  
David Makowski ◽  
Zamir Libohova ◽  
Luca Bragazza ◽  
Sokrat Sinaj

&lt;p&gt;Increasing soil organic carbon (SOC) in agro-ecosystems enables to address simultaneously food security as well as climate change adaptation and mitigation. Croplands represent a great potential to sequester atmospheric C because they are depleted in SOC. Hence, reliable estimations of SOC deficits in agro-ecosystems are crucial to evaluate the C sequestration potential of agricultural soils and support management practices. Using a 30-year old soil monitoring networks with 250 sites established in western Switzerland, we identified factors driving the long-term SOC dynamics in croplands (CR) and permanent grasslands (PG) and quantified SOC deficit. A new relationship between the silt + clay (SC) soil particles and the C stored in the mineral-associated fraction (MAOMC) was established. We also tested the assumption about whether or not PG can be used as carbon-saturated reference sites. The C-deficit in CR constituted about a third of their potential SOC content and was mainly affected by the proportion of temporary grassland in the crop rotation. SOC accrual or loss were the highest in sites that experienced land-use change. The MAOMC level in PG depended on the C accrual history, indicating that C-saturation level was not coincidental. Accordingly, the relationship between MAOMC and SC to determine soil C-saturation should be estimated by boundary line analysis instead of least squares regressions. In conclusion, PG do provide an additional SOC storage capacity under optimal management, though the storage capacity is greater for CR.&lt;/p&gt;


2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

&lt;p&gt;Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).&lt;/p&gt;&lt;p&gt;Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.&lt;/p&gt;&lt;p&gt;Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.&lt;/p&gt;


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245040
Author(s):  
Feng Zhang ◽  
Shihang Wang ◽  
Mingsong Zhao ◽  
Falv Qin ◽  
Xiaoyu Liu

Soil organic carbon content has a significant impact on soil fertility and grain yield, making it an important factor affecting agricultural production and food security. Dry farmland, the main type of cropland in China, has a lower soil organic carbon content than that of paddy soil, and it may have a significant carbon sequestration potential. Therefore, in this study we applied the CENTURY model to explore the temporal and spatial changes of soil organic carbon (SOC) in Jilin Province from 1985 to 2015. Dry farmland soil polygons were extracted from soil and land use layers (at the 1:1,000,000 scale). Spatial overlay analysis was also used to extract 1282 soil polygons from dry farmland. Modelled results for SOC dynamics in the dry farmland, in conjunction with those from the Yushu field-validation site, indicated a good level of performance. From 1985 to 2015, soil organic carbon density (SOCD) of dry farmland decreased from 34.36 Mg C ha−1 to 33.50 Mg C ha−1 in general, having a rate of deterioration of 0.03 Mg C ha−1 per year. Also, SOC loss was 4.89 Tg from dry farmland soils in the province, with a deterioration rate of 0.16 Tg C per year. 35.96% of the dry farmland its SOCD increased but 64.04% of the area released carbon. Moreover, SOC dynamics recorded significant differences between different soil groups. The method of coupling the CENTURY model with a detailed soil database can simulate temporal and spatial variations of SOC at a regional scale, and it can be used as a precise simulation method for dry farmland SOC dynamics.


2013 ◽  
Vol 20 (2) ◽  
pp. 653-665 ◽  
Author(s):  
Martin Wiesmeier ◽  
Rico Hübner ◽  
Peter Spörlein ◽  
Uwe Geuß ◽  
Edzard Hangen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document