scholarly journals Sensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites

2009 ◽  
Vol 6 (12) ◽  
pp. 3035-3051 ◽  
Author(s):  
J. van Huissteden ◽  
A. M. R. Petrescu ◽  
D. M. D. Hendriks ◽  
K. T. Rebel

Abstract. Modelling of wetland CH4 fluxes using wetland soil emission models is used to determine the size of this natural source of CH4 emission on local to global scale. Most process models of CH4 formation and soil-atmosphere CH4 transport processes operate on a plot scale. For large scale emission modelling (regional to global scale) upscaling of this type of model requires thorough analysis of the sensitivity of these models to parameter uncertainty. We applied the GLUE (Generalized Likelihood Uncertainty Analysis) methodology to a well-known CH4 emission model, the Walter-Heimann model, as implemented in the PEATLAND-VU model. The model is tested using data from two temperate wetland sites and one arctic site. The tests include experiments with different objective functions, which quantify the fit of the model results to the data. The results indicate that the model 1) in most cases is capable of estimating CH4 fluxes better than an estimate based on the data avarage, but does not clearly outcompete a regression model based on local data; 2) is capable of reproducing larger scale (seasonal) temporal variability in the data, but not the small-scale (daily) temporal variability; 3) is not strongly sensitive to soil parameters, 4) is sensitive to parameters determining CH4 transport and oxidation in vegetation, and the temperature sensitivity of the microbial population. The GLUE method also allowed testing of several smaller modifications of the original model. We conclude that upscaling of this plot-based wetland CH4 emission model is feasible, but considerable improvements of wetland CH4 modelling will result from improvement of wetland vegetation data.

2009 ◽  
Vol 6 (5) ◽  
pp. 9083-9126 ◽  
Author(s):  
J. van Huissteden ◽  
A. M. R. Petrescu ◽  
D. M. D. Hendriks ◽  
K. T. Rebel

Abstract. Modelling of wetland CH4 fluxes using wetland soil emission models is used to determine the size of this natural source of CH4 emission on local to global scale. Most process models of CH4 formation and soil-atmosphere CH4 transport processes operate on a plot scale. For large scale emission modelling (regional to global scale) upscaling of this type of model requires thorough analysis of the sensitivity of these models to parameter uncertainty. We applied the GLUE (Generalized Likelihood Uncertainty Analysis) methodology to a well-known CH4 emission model, the Walter-Heimann model, as implemented in the PEATLAND-VU model. The model is tested using data from two temperate wetland sites and one arctic site. The tests include experiments with different objective functions, which quantify the fit of the model results to the data. The results indicate that the model 1) in most cases is capable of estimating CH4 fluxes better than an estimate based on the data avarage, but does not clearly outcompete a regression model based on local data; 2) is capable of reproducing larger scale (seasonal) temporal variability in the data, but not the small-scale (daily) temporal variability; 3) is not strongly sensitive to soil parameters, 4) is sensitive to parameters determining CH4 transport and oxidation in vegetation, and the temperature sensitivity of the microbial population. The GLUE method also allowed testing of several smaller modifications of the original model. We conclude that upscaling of this plot-based wetland CH4 emission model is feasible, but considerable improvements of wetland CH4 modelling will result from improvement of wetland vegetation data.


2018 ◽  
Vol 15 (3) ◽  
pp. 937-951 ◽  
Author(s):  
Olli Peltola ◽  
Maarit Raivonen ◽  
Xuefei Li ◽  
Timo Vesala

Abstract. Emission via bubbling, i.e. ebullition, is one of the main methane (CH4) emission pathways from wetlands to the atmosphere. Direct measurement of gas bubble formation, growth and release in the peat–water matrix is challenging and in consequence these processes are relatively unknown and are coarsely represented in current wetland CH4 emission models. In this study we aimed to evaluate three ebullition modelling approaches and their effect on model performance. This was achieved by implementing the three approaches in one process-based CH4 emission model. All the approaches were based on some kind of threshold: either on CH4 pore water concentration (ECT), pressure (EPT) or free-phase gas volume (EBG) threshold. The model was run using 4 years of data from a boreal sedge fen and the results were compared with eddy covariance measurements of CH4 fluxes.Modelled annual CH4 emissions were largely unaffected by the different ebullition modelling approaches; however, temporal variability in CH4 emissions varied an order of magnitude between the approaches. Hence the ebullition modelling approach drives the temporal variability in modelled CH4 emissions and therefore significantly impacts, for instance, high-frequency (daily scale) model comparison and calibration against measurements. The modelling approach based on the most recent knowledge of the ebullition process (volume threshold, EBG) agreed the best with the measured fluxes (R2 = 0.63) and hence produced the most reasonable results, although there was a scale mismatch between the measurements (ecosystem scale with heterogeneous ebullition locations) and model results (single horizontally homogeneous peat column). The approach should be favoured over the two other more widely used ebullition modelling approaches and researchers are encouraged to implement it into their CH4 emission models.


2017 ◽  
Author(s):  
Olli Peltola ◽  
Maarit Raivonen ◽  
Xuefei Li ◽  
Timo Vesala

Abstract. Emission via bubbling, i.e. ebullition, is one of the main methane (CH4) emission pathways from wetlands to the atmosphere. Direct measurement of gas bubble formation, growth and release in the peat-water matrix is challenging and in consequence these processes are relatively unknown and are coarsely represented in current wetland CH4 emission models. In this study we aimed to evaluate three ebullition modelling approaches and their effect on model performance. This was achieved by implementing the three approaches in one process based CH4 emission model. All the approaches were based on some kind of threshold: either on CH4 pore water concentration (ECT), pressure (EPT) or free-phase gas volume (EBG) threshold. The model was run using four years of data from a boreal sedge fen and the results were compared against eddy covariance measurements of CH4 fluxes. Modelled annual CH4 emissions were largely unaffected by the different ebullition modelling approaches, however temporal variability of CH4 emissions varied an order of magnitude between the approaches. Hence the ebullition modelling approach drives the temporal variability of modelled CH4 emissions and therefore significantly impacts for instance high-frequency (daily scale) model comparison and calibration against measurements. The modelling approach based on the most recent knowledge of the ebullition process (volume threshold, EBG) agreed the best with the measured fluxes (R2 = 0.71) and hence produced the most reasonable results. The approach should be favoured over the two other more widely used ebullition modelling approaches and researchers are encouraged to implement it into their CH4 emission models.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jacob R. Schaperow ◽  
Dongyue Li ◽  
Steven A. Margulis ◽  
Dennis P. Lettenmaier

AbstractHydrologic models predict the spatial and temporal distribution of water and energy at the land surface. Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity (VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated from space-based MODIS measurements have been compiled into input files for both the Classic and Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. We evaluate VICGlobal’s ability to simulate the water balance in the Upper Colorado River basin and 12 smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations in the CONUS.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


2012 ◽  
Vol 27 (4) ◽  
pp. 972-987 ◽  
Author(s):  
Yong Wang ◽  
Simona Tascu ◽  
Florian Weidle ◽  
Karin Schmeisser

Abstract The regional single-model-based Aire Limitée Adaptation Dynamique Développement International–Limited Area Ensemble Forecasting (ALADIN-LAEF) ensemble prediction system (EPS) is evaluated and compared with the global ECMWF-EPS to investigate the added value of regional to global EPS models. ALADIN-LAEF consists of 16 perturbed members at 18-km horizontal resolution, while ECMWF-EPS includes 50 perturbed members at 50-km horizontal resolution. In ALADIN-LAEF, the atmospheric initial condition uncertainty is quantified by using blending, which combines large-scale uncertainty generated by the ECMWF-EPS singular-vector approach with small-scale perturbations resolved by the ALADIN breeding technique. The surface initial condition perturbations are generated by use of the noncycling surface breeding (NCSB) technique, and different physics schemes are employed for different forecast members to account for model uncertainties. The verification and comparison have been carried out for a 2-month period during summer 2007 over central Europe. The results show a quite favorable level of performance for ALADIN-LAEF compared to ECMWF-EPS for surface weather variables. ALADIN-LAEF adds more value to precipitation forecasts and has greater skill for 10-m wind and mean sea level pressure results than does ECMWF-EPS. For 2-m temperature, ALADIN-LAEF forecasts have larger spread, are statistically more consistent, but also have less skill than ECMWF-EPS due to the strong cold bias in the ALADIN forecasts. For the upper-air weather parameters, the forecast of ALADIN-LAEF has a larger spread, but the forecast skill of ALADIN-LAEF is from neutral to slightly inferior compared to ECMWF-EPS. It may be concluded that a regional single-model-based EPS with fewer ensemble members could provide more added value in terms of greater skill for near-surface weather variables than the global EPS with larger ensemble size, whereas it may have limitations when applied to upper-air weather variables.


2013 ◽  
Vol 440 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Yannick J. L. Michaux ◽  
Anthony F. J. Moffat ◽  
André-Nicolas Chené ◽  
Nicole St-Louis

Abstract Examination of the temporal variability properties of several strong optical recombination lines in a large sample of Galactic Wolf–Rayet (WR) stars reveals possible trends, especially in the more homogeneous WC than the diverse WN subtypes, of increasing wind variability with cooler subtypes. This could imply that a serious contender for the driver of the variations is stochastic, magnetic subsurface convection associated with the 170 kK partial-ionization zone of iron, which should occupy a deeper and larger zone of greater mass in cooler WR subtypes. This empirical evidence suggests that the heretofore proposed ubiquitous driver of wind variability, radiative instabilities, may not be the only mechanism playing a role in the stochastic multiple small-scaled structures seen in the winds of hot luminous stars. In addition to small-scale stochastic behaviour, subsurface convection guided by a global magnetic field with localized emerging loops may also be at the origin of the large-scale corotating interaction regions as seen frequently in O stars and occasionally in the winds of their descendant WR stars.


2021 ◽  
Vol 124 (1) ◽  
pp. 141-162 ◽  
Author(s):  
J.F. Dewey ◽  
E.S. Kiseeva ◽  
J.A. Pearce ◽  
L.J. Robb

Abstract Space probes in our solar system have examined all bodies larger than about 400 km in diameter and shown that Earth is the only silicate planet with extant plate tectonics sensu stricto. Venus and Earth are about the same size at 12 000 km diameter, and close in density at 5 200 and 5 500 kg.m-3 respectively. Venus and Mars are stagnant lid planets; Mars may have had plate tectonics and Venus may have had alternating ca. 0.5 Ga periods of stagnant lid punctuated by short periods of plate turnover. In this paper, we contend that Earth has seen five, distinct, tectonic periods characterized by mainly different rock associations and patterns with rapid transitions between them; the Hadean to ca. 4.0 Ga, the Eo- and Palaeoarchaean to ca. 3.1 Ga, the Neoarchaean to ca. 2.5 Ga, the Proterozoic to ca. 0.8 Ga, and the Neoproterozoic and Phanerozoic. Plate tectonics sensu stricto, as we know it for present-day Earth, was operating during the Neoproterozoic and Phanerozoic, as witnessed by features such as obducted supra-subduction zone ophiolites, blueschists, jadeite, ruby, continental thin sediment sheets, continental shelf, edge, and rise assemblages, collisional sutures, and long strike-slip faults with large displacements. From rock associations and structures, nothing resembling plate tectonics operated prior to ca. 2.5 Ga. Archaean geology is almost wholly dissimilar from Proterozoic-Phanerozoic geology. Most of the Proterozoic operated in a plate tectonic milieu but, during the Archaean, Earth behaved in a non-plate tectonic way and was probably characterised by a stagnant lid with heat-loss by pluming and volcanism, together with diapiric inversion of tonalite-trondjemite-granodiorite (TTG) basement diapirs through sinking keels of greenstone supracrustals, and very minor mobilism. The Palaeoarchaean differed from the Neoarchaean in having a more blobby appearance whereas a crude linearity is typical of the Neoarchaean. The Hadean was probably a dry stagnant lid Earth with the bulk of its water delivered during the late heavy bombardment, when that thin mafic lithosphere was fragmented to sink into the asthenosphere and generate the copious TTG Ancient Grey Gneisses (AGG). During the Archaean, a stagnant unsegmented, lithospheric lid characterised Earth, although a case can be made for some form of mobilism with “block jostling”, rifting, compression and strike-slip faulting on a small scale. We conclude, following Burke and Dewey (1973), that there is no evidence for subduction on a global scale before about 2.5 Ga, although there is geochemical evidence for some form of local recycling of crustal material into the mantle during that period. After 2.5 Ga, linear/curvilinear deformation belts were developed, which “weld” cratons together and palaeomagnetism indicates that large, lateral, relative motions among continents had begun by at least 1.88 Ga. The “boring billion”, from about 1.8 to 0.8 Ga, was a period of two super-continents (Nuna, also known as Columbia, and Rodinia) characterised by substantial magmatism of intraplate type leading to the hypothesis that Earth had reverted to a single plate planet over this period; however, orogens with marginal accretionary tectonics and related magmatism and ore genesis indicate that plate tectonics was still taking place at and beyond the bounds of these supercontinents. The break-up of Rodinia heralded modern plate tectonics from about 0.8 Ga. Our conclusions are based, almost wholly, upon geological data sets, including petrology, ore geology and geochemistry, with minor input from modelling and theory.


Author(s):  
Kazunori Shimazaki ◽  
Eiji Miyazaki ◽  
Fumitaka Urayama ◽  
Yugo Kimoto

Sign in / Sign up

Export Citation Format

Share Document