scholarly journals Global variability of phytoplankton functional types from space: assessment via the particle size distribution

2010 ◽  
Vol 7 (3) ◽  
pp. 4295-4340 ◽  
Author(s):  
T. S. Kostadinov ◽  
D. A. Siegel ◽  
S. Maritorena

Abstract. A new method of retrieving the parameters of a power-law particle size distribution (PSD) from ocean color remote sensing data was used to assess the global distribution and dynamics of phytoplankton functional types (PFT's). The method retrieves the power-law slope, ξ, and the abundance at a reference diameter, N0, based upon the shape and magnitude of the particulate backscattering coefficient spectrum. Relating the PSD to PFT's on global scales assumes that the open ocean particulate assemblage is biogenic. The retrieved PSD's can be integrated to define three size-based PFT's by the percent volume concentration contribution of three phytoplankton size classes – picoplankton (0.5–2 μm in equivalent spherical diameter), nanoplankton (2–20 μm) and microplankton (20–50 μm). Validation with in-situ HPLC diagnostic pigments results in satisfactory match-ups for the pico- and micro-phytoplankton size classes. Global climatologies derived from SeaWiFS monthly data reveal PFT and particle abundance spatial patterns that are consistent with current understanding. Oligotrophic gyres are characterized by lower particle abundance and higher contribution by picoplankton-sized particles than transitional or eutrophic regions. Seasonal succession patterns for size-based PFT's reveal good correspondence between increasing chl and percent contribution by microplankton, as well as increasing particle abundance. Long-term trends in particle abundances are generally inconclusive yet are well correlated with the MEI index indicating increased oligotrophy (i.e. lower particle abundance and increased contribution of picoplankton-sized particles) during the warm phase of an El Niño event. This work demonstrates the utility and future potential of assessing phytoplankton functional types using remote characterization of the particle size distribution.

2010 ◽  
Vol 7 (10) ◽  
pp. 3239-3257 ◽  
Author(s):  
T. S. Kostadinov ◽  
D. A. Siegel ◽  
S. Maritorena

Abstract. A new method of retrieving the parameters of a power-law particle size distribution (PSD) from ocean color remote sensing data was used to assess the global distribution and dynamics of phytoplankton functional types (PFT's). The method retrieves the power-law slope, ξ, and the abundance at a reference diameter, N0, based upon the shape and magnitude of the particulate backscattering coefficient spectrum. Relating the PSD to PFT's on global scales assumes that the open ocean particulate assemblage is biogenic. The retrieved PSD's can be integrated to define three size-based PFT's by the percent volume concentration contribution of three phytoplankton size classes – picoplankton (0.5–2 μm in equivalent spherical diameter), nanoplankton (2–20 μm) and microplankton (20–50 μm). Validation with in-situ HPLC diagnostic pigments resulted in better match-ups for the pico- and micro-phytoplankton size classes as compared to nanoplankton. Global decadal averages derived from SeaWiFS monthly data reveal PFT and particle abundance spatial patterns that are consistent with current understanding. Oligotrophic gyres are characterized by lower particle abundance and higher contribution by picoplankton-sized particles than transitional or eutrophic regions. Seasonal succession patterns for size-based PFT's reveal good correspondence between increasing chlorophyll concentration and percent contribution by microplankton, as well as increasing particle abundance. Long-term trends in particle abundances are generally well correlated with the MEI index indicating increased oligotrophy (i.e. lower particle abundance and increased contribution of picoplankton-sized particles) during the warm phase of an El Niño event. This work demonstrates the utility and future potential of assessing phytoplankton functional types using remote characterization of the particle size distribution.


Ocean Science ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 561-575 ◽  
Author(s):  
Tihomir S. Kostadinov ◽  
Svetlana Milutinović ◽  
Irina Marinov ◽  
Anna Cabré

Abstract. Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield  ∼  0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.


2002 ◽  
Vol 51 (1-2) ◽  
pp. 37-46 ◽  
Author(s):  
Attila Nemes ◽  
I. Czinkota ◽  
Gy. Czinkota ◽  

Soil texture is an important input parameter for many soil hydraulic pedotransfer functions (PTFs) of the day. Common soil particle-size classes are required to be able to uniformly determine the texture of soils. However, it is not always possible - due to different national classification systems - and much valuable information is disregarded while either deriving or applying PTFs. One way to get common particle-size class information is to interpolate the particle-size distribution (PSD) curve. Advanced interpolation solutions are becoming available, but there is always uncertainty associated with these techniques. Another possibility is to measure all PSD curves in such a way that it is compatible to the commonly used classification systems. A new automated measurement technique is introduced that can easily provide PSD data compatible to any (and all) of the existing national and international classification systems at the same time, without the burden of extra labour. A computerized measurement system has been developed to record density changes in a settling-tube system in any discretional (small) time steps, which in turn allows the derivation of a quasi-continuous PSD curve. The measurement is based on areometry (Stokes-law), thus the system is compatible to the most commonly applied settling-tube measurements. The new evaluation method of measured values takes into consideration the density changes along the areometer-body so it avoids the problem of reference point determination. The theory and setup of the system are explained and measurement examples are given. The presented comparative measurements show good correspondence with conventional settling-tube results, and the reproducibility of the measurement shows to be very high. This technique does not require more sample preparation than past methods. The automated reading requires less manpower to perform the measurement - which also reduces human error sources. However, it provides very detailed PSD data that has advantages, like revealing multi-modality in the particle-size distribution or providing data that complies with any of the classification systems.


1997 ◽  
Vol 36 (4) ◽  
pp. 217-224 ◽  
Author(s):  
Iris Kaminski ◽  
Nicolae Vescan ◽  
Avner Adin

Particle size distribution (PSD) allows more accurate simulations of filtration models and better understanding of filter performance. PSD in municipal activated sludge effluent filtration is determined, varying filtration rate, grain size, flocculant type and dosage and function parameters are examined in this work. Results show, that removal efficiency varies for different size groups: small particles in the range of 5-10 μm in initialization stage, with no chemical aids, are poorly removed. Higher rate filters were more sensitive to the particle size than lower rate filters. Filtration with chemical aids is more sensitive to filtration conditions than filtration with no chemical additions. Particle size distribution in filtrate generally fits power law function behavior better than in raw effluent. The treatment smoothens the function somewhat. In a similar manner to the effect of settling in tanks or in natural lakes. Degree of correlation to power law function may indicate the mode of filter operation: high - working stage, low - breakthrough stage. β may also reflect on filters performance: high values - initial filtration stages. Decrease in β values - cycle progress towards breakthrough. Low β values, with low PSD correlation to power law function, may indicate low filtration efficiency or breakthrough.


1976 ◽  
Vol 31 ◽  
pp. 73-73
Author(s):  
C.L. Ross

Observations to determine the radiance of forward scattered sunlight from particles in lunar libration regions have been attempted with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; the upper limit to the libration cloud radiance is determined to be 2.5 × 10−11 Bo, where Bo is the radiance of the mean solar disk. Employing models of the particle type and size distribution in the libration clouds, density enhancements have been calculated on the basis of the upper limit of the forward scattered radiance presented herein, and on the basis of earlier observations of the libration region backscattered radiance. The cases where the power law particle size distribution exponent K and complex index of refraction m are 2.5, 1.33-0.051 and 2.5, 1.50-0.051, respectively, are inconsistent with the forward and backscatter observations. Finally, the brightness contrast of remaining possible models of the libration clouds with respect to the K- and F-coronal background is calculated, and is shown to be a maximum in the vicinity of elongation angle ~30°.


2011 ◽  
Vol 28 (6) ◽  
pp. 779-786 ◽  
Author(s):  
J. G. DeVore

Abstract This paper describes a simple relationship between the slope of particulate optical depth as a function of wavelength and the size distribution of spherical particles. It is based on approximating extinction using a truncated geometric optics relationship and is applicable when optical depth decreases with wavelength. The new relationship suggests that extinction versus wavelength measurements are most sensitive to particles that are comparable in size to the wavelength. When optical depth is expressed as a power-law function of wavelength, the resulting particle size distribution is also a power-law function of size, with the two exponents reproducing the well-known relationship between the Ångström and Junge exponents. Examples of applying the new relationship are shown using both numerical calculations based on Mie theory and measurements from the Aerosol Robotic Network (AERONET) sun photometer at NASA Goddard Space Flight Center (GSFC). Since the truncated geometric approximation makes no assumptions per se concerning the form of the particle size distribution, it may find application in supplementing solar aureole profile measurements in retrieving the size distributions of particles in thin clouds—for example, cirrus—or when they are present.


2001 ◽  
Vol 43 (5) ◽  
pp. 103-110 ◽  
Author(s):  
E. B. Shin ◽  
H. S. Yoon ◽  
Y. D. Lee ◽  
Y. S. Pae ◽  
S. W. Hong ◽  
...  

Over the past decades, flocculation and/or sedimentation processes have been adopted to remove pollutants from CSOs. It has been learned that major factors affecting settlement of pollutants are the particle size distribution, their settling velocities and their specific gravity. It is, therefore, a good idea to analyze the particle size distribution and settleability of CSOs pollutants in order to develop details in designing a process. Discussed in this study are pollutant characteristics of CSOs such as particle size distribution and settleability of pollutants. The power law function is applied and is found to be an effective and reliable index for expressing the particle size distribution of pollutants in CSOs. Based on the particle size spectrum analysis, the tendency toward settling and simultaneous flocculation-settling phenomenon of CSOs pollutants is described. Based on the regression analysis it is observed that the derived constants of curves representing settling velocity profile are proportional to the initial concentration of particles and to the β-values of power law distributions. It is also revealed that the simultaneous flocculation-settling processes are effectively described by the changes of the average particle diameter and of the β-values of power law distributions.


2020 ◽  
Vol 12 (16) ◽  
pp. 2581
Author(s):  
Yanxia Liu ◽  
Haijun Huang ◽  
Liwen Yan ◽  
Xiguang Yang ◽  
Haibo Bi ◽  
...  

The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters.


Sign in / Sign up

Export Citation Format

Share Document