scholarly journals Outline of an Automated System for the Quasi-Continuous Measurement of Particle-size Distribution

2002 ◽  
Vol 51 (1-2) ◽  
pp. 37-46 ◽  
Author(s):  
Attila Nemes ◽  
I. Czinkota ◽  
Gy. Czinkota ◽  

Soil texture is an important input parameter for many soil hydraulic pedotransfer functions (PTFs) of the day. Common soil particle-size classes are required to be able to uniformly determine the texture of soils. However, it is not always possible - due to different national classification systems - and much valuable information is disregarded while either deriving or applying PTFs. One way to get common particle-size class information is to interpolate the particle-size distribution (PSD) curve. Advanced interpolation solutions are becoming available, but there is always uncertainty associated with these techniques. Another possibility is to measure all PSD curves in such a way that it is compatible to the commonly used classification systems. A new automated measurement technique is introduced that can easily provide PSD data compatible to any (and all) of the existing national and international classification systems at the same time, without the burden of extra labour. A computerized measurement system has been developed to record density changes in a settling-tube system in any discretional (small) time steps, which in turn allows the derivation of a quasi-continuous PSD curve. The measurement is based on areometry (Stokes-law), thus the system is compatible to the most commonly applied settling-tube measurements. The new evaluation method of measured values takes into consideration the density changes along the areometer-body so it avoids the problem of reference point determination. The theory and setup of the system are explained and measurement examples are given. The presented comparative measurements show good correspondence with conventional settling-tube results, and the reproducibility of the measurement shows to be very high. This technique does not require more sample preparation than past methods. The automated reading requires less manpower to perform the measurement - which also reduces human error sources. However, it provides very detailed PSD data that has advantages, like revealing multi-modality in the particle-size distribution or providing data that complies with any of the classification systems.

2010 ◽  
Vol 7 (3) ◽  
pp. 4295-4340 ◽  
Author(s):  
T. S. Kostadinov ◽  
D. A. Siegel ◽  
S. Maritorena

Abstract. A new method of retrieving the parameters of a power-law particle size distribution (PSD) from ocean color remote sensing data was used to assess the global distribution and dynamics of phytoplankton functional types (PFT's). The method retrieves the power-law slope, ξ, and the abundance at a reference diameter, N0, based upon the shape and magnitude of the particulate backscattering coefficient spectrum. Relating the PSD to PFT's on global scales assumes that the open ocean particulate assemblage is biogenic. The retrieved PSD's can be integrated to define three size-based PFT's by the percent volume concentration contribution of three phytoplankton size classes – picoplankton (0.5–2 μm in equivalent spherical diameter), nanoplankton (2–20 μm) and microplankton (20–50 μm). Validation with in-situ HPLC diagnostic pigments results in satisfactory match-ups for the pico- and micro-phytoplankton size classes. Global climatologies derived from SeaWiFS monthly data reveal PFT and particle abundance spatial patterns that are consistent with current understanding. Oligotrophic gyres are characterized by lower particle abundance and higher contribution by picoplankton-sized particles than transitional or eutrophic regions. Seasonal succession patterns for size-based PFT's reveal good correspondence between increasing chl and percent contribution by microplankton, as well as increasing particle abundance. Long-term trends in particle abundances are generally inconclusive yet are well correlated with the MEI index indicating increased oligotrophy (i.e. lower particle abundance and increased contribution of picoplankton-sized particles) during the warm phase of an El Niño event. This work demonstrates the utility and future potential of assessing phytoplankton functional types using remote characterization of the particle size distribution.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1232
Author(s):  
Dušan Igaz ◽  
Elena Aydin ◽  
Miroslava Šinkovičová ◽  
Vladimír Šimanský ◽  
Andrej Tall ◽  
...  

The paper presents the comparison of soil particle size distribution determined by standard pipette method and laser diffraction. Based on the obtained results (542 soil samples from 271 sites located in the Nitra, Váh and Hron River basins), regression models were calculated to convert the results of the particle size distribution by laser diffraction to pipette method. Considering one of the most common soil texture classification systems used in Slovakia (according to Novák), the emphasis was placed on the determination accuracy of particle size fraction <0.01 mm. Analysette22 MicroTec plus and Mastersizer2000 devices were used for laser diffraction. Polynomial regression model resulted in the best approximation of measurements by laser diffraction to values obtained by pipette method. In the case of particle size fraction <0.01 mm, the differences between the measured values by pipette method and both laser analyzers ranged in average from 3% up to 9% and from 2% up to 11% in the case of Analysette22 and Mastersizer2000, respectively. After correction, the differences decreased to average 3.28% (Analysette22) and 2.24% (Mastersizer2000) in comparison with pipette method. After recalculation of the data, laser diffraction can be used alongside the sedimentation methods.


2013 ◽  
Vol 37 (2) ◽  
pp. 379-391 ◽  
Author(s):  
Alexandre Hugo Cezar Barros ◽  
Quirijn de Jong van Lier ◽  
Aline de Holanda Nunes Maia ◽  
Fábio Vale Scarpare

Pedotransfer functions (PTF) were developed to estimate the parameters (α, n, θr and θs) of the van Genuchten model (1980) to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa) and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward) to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter), and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE). The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter content.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 55
Author(s):  
Aleksandra Gorączko ◽  
Szymon Topoliński

Particle size distribution is one of the most significant factors determining physical soil properties. Laser diffraction analysis (LDA) is an alternative method to the traditional hydrometric methods (HM) used to determine particle size distribution in soils. However, significant differences in fraction content are found in relation to the applied methods of a particle size test. Above all, measurements performed by LDA for clayey soils usually produce different results to those based on Stokes’ equation. Methodical problems, such as an appropriate method of dispersing the sample and the selection of LDA calculation theory, also play a significant role in fine soils. This paper contains the results of analyses of Neogene clays from Poland, which are characterized by differentiation with regard to the content of clay fraction particles. In this article, the validity of using laser diffraction analysis (LDA) for the identification and characterization of clayey sediments with common genesis is assessed. The possibility of finding reliable pedotransfer functions to the convert LDA results to a hydrometric analysis is discussed.


Soil Research ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 428 ◽  
Author(s):  
Budiman Minasny ◽  
Alex B. McBratney ◽  
Damien J. Field ◽  
Grant Tranter ◽  
Neil J. McKenzie ◽  
...  

This paper aims to establish the means and ranges of clay, silt, and sand contents from field texture classes, and to investigate the differences in the field texture classes and texture determined from particle-size analysis. The results of this paper have 2 practical applications: (1) to estimate the particle size distribution and its uncertainty from field texture as input to pedotransfer functions, and (2) to examine the criteria of texture contrast soils in the Australian Soil Classification system. Estimates of clay, silt, and sand content for each field texture class are given and this allows the field texture classes to be plotted in the texture triangle. There are considerable differences between field texture classes and particle-size classes. Based on the uncertainties in determining the clay content from field texture, we establish the probability of the occurrence of a texture contrast soil according to the Australian Soil Classification system, given the texture of the B2 horizon and its overlying A horizon. I enjoy doing the soil-texture feel test with my fingers or kneading a clay soil, which is a short step from ceramics or sculpture. Hans Jenny (1984)


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988156 ◽  
Author(s):  
Jiejie Ji ◽  
Qiang Yao ◽  
Faming Wu ◽  
Hongtao Li

The particle size distribution of granular blasting materials has a vital influence on the filling quality of earth-rockfill dams. The engineering experience-based method used to evaluate the particle size distribution has shortcomings at both the theoretical and practical aspects. This article proposes a new evaluation method based on the fractal theory. Grading sieve tests on granular materials, mass fractal analysis of particle size distribution, and a probability distribution model test of the characteristic parameters are used to revise the functional relationships between the fractal dimension D and the uniformity coefficient/curvature coefficient ( Cu/ Cc) of the grading curve. The feasibility of using D to evaluate the particle size distribution and the optimal fine grain content is then analyzed and determined. According to the results, the geometric shapes of the granular blasting materials have fractal characteristics, and their particle size distribution has a fractal distribution. The ranges of D where the rockfill and transition materials have a good particle size distribution are D = 2.254–2.529 and D = 2.358–2.559, corresponding to optimal fine grain content of 1.953%–11.805% and 10.268%–23.123%, respectively. Fractal dimension has a solid theoretical basis and strong practical applicability as an evaluation index for the particle size distribution of granular blasting materials.


2014 ◽  
Vol 63 (1) ◽  
pp. 9-18
Author(s):  
Hilda Hernádi ◽  
A. Makó

The obtained results of the present study showed the good applicability of the van Genuchten equation for parameterizing NAPL retention data of soils (R2 = 0.99).Sufficient applicability of continuous PTFs for estimating the parameters of NAPL retention curves was found (R2 for α, n and θs was 0.47, 0.84 and 0.86, respectively).The accuracy of parametric and point PTFs increased in case derived values of the independent variables in addition to the PSD (particle size distribution) fractions, bulk density, CaCO3 and organic matter content (R2 = 0.57–0.90 and RMSE = 2.43–5.67 vol%) were used, as compared to PTFs using only the original values of basic soil parameters as predictor variables (R2 = 0,48–0.86; RMSE = 3.56–6.83 vol%).According to the gained results, PTFs seem to be similarly accurate if the particle size distribution of soils — determined by different standard methods — are applied as independent variables.


Sign in / Sign up

Export Citation Format

Share Document