scholarly journals Can Carbon Sequestration in Tasmanian “Wet” Eucalypt Forests Be Used to Mitigate Climate Change? Forest Succession, the Buffering Effects of Soils, and Landscape Processes Must Be Taken into Account

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peter D. McIntosh ◽  
James L. Hardcastle ◽  
Tobias Klöffel ◽  
Martin Moroni ◽  
Talitha C. Santini

Small areas of the wetter parts of southeast Australia including Tasmania support high-biomass “wet” eucalypt forests, including “mixed” forests consisting of mature eucalypts up to 100 m high with a rainforest understorey. In Tasmania, mixed forests transition to lower biomass rainforests over time. In the scientific and public debate on ways to mitigate climate change, these forests have received attention for their ability to store large amounts of carbon (C), but the contribution of soil C stocks to the total C in these two ecosystems has not been systematically researched, and consequently, the potential of wet eucalypt forests to serve as long-term C sinks is uncertain. This study compared soil C stocks to 1 m depth at paired sites under rainforest and mixed forests and found that there was no detectable difference of mean total soil C between the two forest types, and on average, both contained about 200 Mg·ha−1 of C. Some C in subsoil under rainforests is 3000 years old and retains a chemical signature of pyrogenic C, detectable in NMR spectra, indicating that soil C stocks are buffered against the effects of forest succession. The mean loss of C in biomass as mixed forests transition to rainforests is estimated to be about 260 Mg·ha−1 over a c. 400-year period, so the mature mixed forest ecosystem emits about 0.65 Mg·ha−1·yr−1 of C during its transition to rainforest. For this reason and because of the risk of forest fires, setting aside large areas of wet eucalypt forests as reserves in order to increase landscape C storage is not a sound strategy for long-term climate change mitigation. Maintaining a mosaic of managed native forests, including regenerating eucalypts, mixed forests, rainforests, and reserves, is likely to be the best strategy for maintaining landscape C stocks.

2021 ◽  
Author(s):  
Shane W. Stoner ◽  
Alison M. Hoyt ◽  
Susan Trumbore ◽  
Carlos A. Sierra ◽  
Marion Schrumpf ◽  
...  

AbstractManaged grasslands have the potential to store carbon (C) and partially mitigate climate change. However, it remains difficult to predict potential C storage under a given soil or management practice. To study C storage dynamics due to long-term (1952–2009) phosphorus (P) fertilizer and irrigation treatments in New Zealand grasslands, we measured radiocarbon (14C) in archived soil along with observed changes in C stocks to constrain a compartmental soil model. Productivity increases from P application and irrigation in these trials resulted in very similar C accumulation rates between 1959 and 2009. The ∆14C changes over the same time period were similar in plots that were both irrigated and fertilized, and only differed in a non-irrigated fertilized plot. Model results indicated that decomposition rates of fast cycling C (0.1 to 0.2 year−1) increased to nearly offset increases in inputs. With increasing P fertilization, decomposition rates also increased in the slow pool (0.005 to 0.008 year−1). Our findings show sustained, significant (i.e. greater than 4 per mille) increases in C stocks regardless of treatment or inputs. As the majority of fresh inputs remain in the soil for less than 10 years, these long term increases reflect dynamics of the slow pool. Additionally, frequent irrigation was associated with reduced stocks and increased decomposition of fresh plant material. Rates of C gain and decay highlight trade-offs between productivity, nutrient availability, and soil C sequestration as a climate change mitigation strategy.


Les/Wood ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 21-32
Author(s):  
Tomáš Kolář ◽  
Petr Čermák ◽  
Miroslav Trnka ◽  
Eva Koňasová ◽  
Irena Sochová ◽  
...  

European forests are undergoing an important transition due to the current climate change, as monocultures are being gradually replaced by mixed forests. Understanding tree growth in mixed forests under a changing climate is challenging because of tree species’ adaptation and long-term forest planning. In this study, we evaluate the long-term behaviour of Norway spruce (Picea abies), silver fir (Abies alba) and European beech (Fagus sylvatica) from a low montane range at the Czech-Austrian border. Species-specific tree-ring width chronologies have revealed significantly decreasing growth trends since the 2000s. Temporally unstable climate–growth relationships showed an increasing negative effect of current growing season drought on spruce growth and a positive effect of dormant season temperature on fir and beech growth. Our results suggest that though species’ response to climate change differs in the mixed forest, growth reduction in the last years has been proved for all species, likely due to frequent climate extremes.


Author(s):  
Valentina Petrovna Gorbatenko ◽  
Marina Alexandrovna Volkova ◽  
Olga Vladimirovna Nosyreva ◽  
George Georgievich Zhuravlev ◽  
Irina Valerievna Kuzhevskaia

Current climate changes in Russia are attended by the increase in frequency of dangerous weather events. This chapter researches long-term variations of the dangerous weather's events on Western Siberia and to reveal general regularity, which can be associated with forest fires. The researches have been carried out for the territories of southeast of Western Siberia. The duration of the fire season increases due to climate change. This is due both to the earlier snowfall and the onset of the phenological spring, and to the increase in the duration of the thunderstorm period. Thunderstorms in Siberia are a much more frequent cause of forest fires (28%) than in other territories. Wildfire frequency is correlated with air temperature and drought anomalies.


Author(s):  
C. D. Koven ◽  
E. A. G. Schuur ◽  
C. Schädel ◽  
T. J. Bohn ◽  
E. J. Burke ◽  
...  

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change ( γ sensitivity) of −14 to −19 Pg C °C −1 on a 100 year time scale. For CH 4 emissions, our approach assumes a fixed saturated area and that increases in CH 4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH 4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.


2016 ◽  
Author(s):  
Dario A. Fornara ◽  
Elizabeth - Anne Wasson ◽  
Peter Christie ◽  
Catherine J. Watson

Abstract. Sustainable grassland intensification aims to increase plant yields while maintaining soils’ ability to act as sinks rather than sources of atmospheric CO2. High biomass yields, however, from managed grasslands can be only maintained through long-term nutrient fertilization, which can significantly affect soil carbon (C) storage and cycling. Key questions remain about (1) how long-term inorganic vs. organic fertilization influences soil C stocks, and (2) how soil C gains (or losses) contribute to the long-term C balance of managed grasslands. Using 43 years of data from a permanent grassland experiment we show that soils not only act as significant C sinks but have not yet reached C saturation. Even unfertilized-control soils showed C sequestration rates of 0.35 Mg C ha−1 yr−1 (i.e. 35 g C m−2 yr−1; 0–15 cm depth) between 1970 and 2013. High application rates of liquid manure (i.e. cattle slurry) further increased soil C sequestration to 0.86 Mg C ha−1 yr−1 (i.e. 86 g C m−2 yr−1) and a key cause of this C accrual was greater C inputs from cattle slurry. However, average coefficients of ‘Slurry-C retention’ suggest that 85 % of C added yearly through liquid manure is lost possibly via CO2 fluxes and organic C leaching from soils. Inorganically fertilized soils (i.e. NPK) had the lowest ‘C-gain-efficiency’ (i.e. unit of C gained per unit of N added) and lowest C sequestration (similar to control soils). Soils receiving cattle slurry showed higher C-gain and N-retention efficiencies compared to soils receiving NPK or pig slurry. We estimate that net rates of CO2-sequestration in the soil top 15 cm can offset 9-to-25 % of GHG emissions from intensive management. However, because of multiple GHG sources associated with livestock farming, the net C balance of these grasslands remains positive (9-to-12 Mg CO2-equivalent ha−1 yr−1), thus contributing to climate change. Further C-gain efficiencies (e.g. reduced enteric fermentation and use of feed concentrates, better nutrient-management) are required to make grassland intensification more sustainable.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 883 ◽  
Author(s):  
Mahtsente Tadese ◽  
Lalit Kumar ◽  
Richard Koech

Understanding the hydrological processes of a watershed in response to climate change is vital to the establishment of sustainable environmental management strategies. This study aimed to evaluate the variability of potential evapotranspiration (PET) and water availability in the Awash River Basin (ARB) under different climate change scenarios and to relate these with long-term drought occurrences in the area. The PET and water availability of the ARB was estimated during the period of 1995–2009 and two future scenarios (2050s and 2070s). The representative concentration pathways (RCP4.5 and RCP8.5) simulations showed an increase in the monthly mean PET from March to August in the 2050s, and all the months in the 2070s. The study also identified a shortage of net water availability in the majority of the months investigated and the occurrence of mild to extreme drought in about 40–50% of the analysed years at the three study locations (Holetta, Koka Dam, and Metehara). The decrease in water availability and an increase in PET, combined with population growth, will aggravate the drought occurrence and food insecurity in the ARB. Therefore, integrated watershed management systems and rehabilitation of forests, as well as water bodies, should be addressed in the ARB to mitigate climate change and water shortage in the area.


Author(s):  
Rui Zhang ◽  
Shimin Liu ◽  
Long Fan ◽  
Tomas Blach ◽  
Guijie Sang

As storage rocks rather than source rocks, shale reservoirs can potentially serve as energy storehouse for energy security and sequester CO2 in the long-term to mitigate climate change. Despite extensive...


2020 ◽  
Author(s):  
Carolina Cardoso Lisboa ◽  
Jonathan Storkey ◽  
Carlos Eduardo Pellegrino Cerri ◽  
Christian Thierfelder ◽  
Juan Andres Quincke ◽  
...  

<p>Balancing food production with environmentally sustainable land management can have important climate change mitigation co-benefits. Recent reports, including the IPCC latest Special Report, launched at the COP 25 in December 2019, have highlighted the significant role of soil carbon (C) stocks in agricultural soils in achieving CO<sub>2</sub> zero emissons and contributing to CO<sub>2</sub> removal. However, to measure the soil C balance (C-gains and C-losses), a deep understanding of the processes governing the changes in soil C stocks in agricultural systems is required as well as knowledge on the impact of management over long and short time scales under distinct climate conditions. An understanding of the mechanisms underpinning these processes depends on robust evidence-based datasets that can be applied to several different models to model soil C-dynamics over time and make predictions upon future scenarios.  The datasets from long-term experiments (LTEs) can be extremely valuable to facilitate the evaluation of alternative food production systems impact/effect on soil health, as such soil C stocks. Employing modeling tools to analyse these data, would lead to better evaluation of land use and management practices and its environmental impacts around the globe. With the aim of supporting the agricultural science community in meeting this and related objetives, the Global Long-Term Agricultural Experiment Network (GLTEN) was launched in October 2019. The main goal of the network is to assemble and harmonize, following FAIR Data Principle (findable, accessible, interoperable and reusable), metadata from LTEs through the online GLTEN-Metadata Portal (https://glten.org/). This initial scientific investigation of the data shared between the experiments focusses on soil C data analyzed using free available tools to exploit and compare the trade-offs between several agricultural practices and C-offset given the distinct soil type and climate conditions. With the support of the GLTEN-members, we will start these joint analyses applying the Carbon Benefits Tools (https://banr.nrel.colostate.edu/CBP/) and the RothC Model (https://www.rothamsted.ac.uk/rothamsted-carbon-model-rothc). The progress of this collaborative work relies on the commitment and expertise of the GLTEN-members and we expect that the outcome from this investigation will support the knowledge refining and advancing the development of existing modeling tools. Furthermore, we will demonstrate the potential for the GLTEN to provide a platform that supports and facilitates collaborative research among the community.</p>


2013 ◽  
Vol 152 (5) ◽  
pp. 699-715 ◽  
Author(s):  
S. BUCKINGHAM ◽  
R. M. REES ◽  
C. A. WATSON

SUMMARYSoil organic carbon (C) plays a critical role in supporting the productive capacity of soils and their ability to provide a wide range of ecologically important functions including the storage of atmospherically derived carbon dioxide (CO2). The present paper collates available information on Scottish soil C stocks and C losses and reviews the potential pressures on terrestrial C, which may threaten future C stocks. Past, present and possible future land use, land management practices and land use changes (LUCs) including forestry, agriculture, nitrogen (N) additions, elevated CO2 and climate change for Scotland are discussed and evaluated in relation to the anthropogenic pressures on soil C.The review deduces that current available data show little suggestion of significant changes in C stocks of Scottish soils, although this may be due to a lack of long-term trend data. However, it can be concluded that there are many pressures, such as climate change, intensity of land use practices, scale of LUC, soil erosion and pollution, which may pose significant threats to the future of Scottish soil C if these factors are not taken into consideration in future land management decisions. In particular, this is due to the land area covered by vulnerable peats and highly organic soils in Scotland compared with other areas in the UK. It is therefore imperative that soil C stocks for different land use, management practices and LUCs are monitored in more detail to provide further insight into the potential changes in sequestered C and subsequent greenhouse gas emissions, as advised by the United Nations Framework Convention on Climate Change (UNFCCC).


Sign in / Sign up

Export Citation Format

Share Document