scholarly journals Integration of remote sensing data and surface observations to estimate the impact of the russian wildfires over Europe and Asia during August 2010

2011 ◽  
Vol 8 (4) ◽  
pp. 7741-7790 ◽  
Author(s):  
L. Mei ◽  
Y. Xue ◽  
G. de Leeuw ◽  
J. Guang ◽  
Y. Wang ◽  
...  

Abstract. A series of wildfires broke out in western Russia starting in late July of 2010. Harmful particulates and gases released into the local Russian atmosphere have been reported, as have possible negative consequences for the global atmosphere. In this study, an extremely hazy area and its transport trajectory on Russian wildfires were analysed using aerosol optical depth (AOD) images retrieved via the synergy method from Moderate Resolution Imaging Spectroradiometer (MODIS) data. In addition, we used trace gases (NO2 and SO2) and CO2 products measured using Ozone Monitoring Instrument (OMI) data, vertical distribution of AOD data retrieved from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the mass trajectory analyses, synoptic maps from a HYSPLIT model simulation and ground-based data, including AERONET (both AOD and Ångström exponent) data and PM2.5. First, an Optimal Smoothing (OS) scheme was used to develop more precise and reliable AOD data based on multiple competing predictions made using several AOD retrieval models; then, integrated AOD and PM2.5 data were related using a chemical transport model (GEOS-Chem), and the integrated AOD and visibility data were related using a 6S model. The results show that the PM2.5 concentration is 3–5 times the normal amount based on both satellite data and in situ values with peak daily mean concentrations of approximately 500 μg m−3. Also, the visibility of many parts of Russia, even Moscow, was less than 100 m; in some areas, the visibility was less than 50 m. Additionally, the possible impact on neighbouring countries due to the long-transport effect was also analysed during 31 July and 15 August 2010. A comparison of the satellite aerosol products and ground observations from the neighbouring countries suggests that wildfires in western Russian have had little impact on most European and Asian countries, the exceptions being Finland, Estonia, Ukraine and Kyrgyzstan. However, a possible impact on the Arctic region was also identified; such an effect would have a serious influence on the polar atmospheric environment and on animals such as polar bears.

2011 ◽  
Vol 8 (12) ◽  
pp. 3771-3791 ◽  
Author(s):  
L. Mei ◽  
Y. Xue ◽  
G. de Leeuw ◽  
J. Guang ◽  
Y. Wang ◽  
...  

Abstract. A series of wildfires broke out in Western Russia starting in late July of 2010. Harmful particulates and gases released into the local Russian atmosphere have been reported, as have possible negative consequences for the global atmosphere. In this study, an extremely hazy area and its transport trajectory on Russian wildfires were analysed using aerosol optical depth (AOD) images retrieved via the synergy method from Moderate Resolution Imaging Spectroradiometer (MODIS) data. In addition, we used trace gases (NO2 and SO2) and CO2 products measured using Ozone Monitoring Instrument (OMI) data, vertical distribution of AOD data retrieved from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the mass trajectory analyses, synoptic maps from a HYSPLIT model simulation and ground-based data, including AERONET (both AOD and Ångström exponent) data and PM2.5. First, an Optimal Smoothing (OS) scheme was used to develop more precise and reliable AOD data based on multiple competing predictions made using several AOD retrieval models; then, integrated AOD and PM2.5 data were related using a chemical transport model (GEOS-Chem), and the integrated AOD and visibility data were related using the 6S radiative transfer code. The results show that the PM2.5 concentration is enhanced by a factor of 3–5 as determined from both satellite and in situ observations with peak daily mean concentrations of approximately 500 μg m3. Also, the visibility in many parts of Russia, for instance in Moscow, was less than 100 m; in some areas, the visibility was less than 50 m. Additionally, the possible impact on neighbouring countries due to long-transport was analysed for 31 July and 15 August 2010. A comparison of the satellite aerosol products and ground observations from the neighbouring countries suggests that wildfires in Western Russian had little impact on most european and asian countries, the exceptions being Finland, Estonia, Ukraine and Kyrgyzstan. However, a possible impact on the Arctic region was identified; such an effect would have a serious influence on the polar atmospheric enviroment, and on animals such as polar bears.


2011 ◽  
Vol 11 (2) ◽  
pp. 3857-3884 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
G. W. Mann ◽  
K. S. Carslaw ◽  
...  

Abstract. A three-dimensional (3-D) chemical transport model (CTM), SLIMCAT, has been used to quantify the effect of denitrification on ozone loss for the Arctic winter/spring 2004/05. The simulated HNO3 is found to be highly sensitive to the polar stratospheric cloud (PSC) scheme used in the model. Here the standard SLIMCAT full chemistry model, which uses a thermodynamic equilibrium PSC scheme, overpredicts the Arctic ozone loss for Arctic winter/spring 2004/05 due to the overestimation of denitrification and stronger chlorine activation than observed. A model run with a detailed microphysical denitrification scheme, DLAPSE (Denitrification by Lagrangian Particle Sedimentation), is less denitrified than the standard model run and better reproduces the observed HNO3 as measured by Airborne SUbmillimeter Radiometer (ASUR) and Aura Microwave Limb Sounder (MLS) instruments. The overestimated denitrification causes a small overestimation of Arctic polar ozone loss (~5–10% at ~17 km) by the standard model. Use of the DLAPSE scheme improves the simulation of Arctic ozone depletion compared with the inferred partial column ozone loss from ozonesondes and satellite data. Overall, denitrification is responsible for a ~30% enhancement in O3 depletion for Arctic winter/spring 2004/05, suggesting that the successful simulation of the impact of denitrification on Arctic ozone depletion also requires the use of a detailed microphysical PSC scheme in the model.


2013 ◽  
Vol 13 (8) ◽  
pp. 21455-21505
Author(s):  
E. Emili ◽  
B. Barret ◽  
S. Massart ◽  
E. Le Flochmoen ◽  
A. Piacentini ◽  
...  

Abstract. Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI) in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE). The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000–225 hPa) should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa) excluded from the analysis. Furthermore, a longer analysis of 6 months (July–August 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE) of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70–225 hPa) and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S–30° N), whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free-troposphere/low-stratosphere ozone.


2016 ◽  
Vol 9 (3) ◽  
pp. 1111-1123 ◽  
Author(s):  
Hyun Cheol Kim ◽  
Pius Lee ◽  
Laura Judd ◽  
Li Pan ◽  
Barry Lefer

Abstract. Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The NASA Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that the OMI footprint-pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20–30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCDs using spatial information from the fine-scale model to adjust the spatial distribution, and also applied averaging kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are applied, with the correlation coefficient R = 0.89. This study suggests that satellite footprint sizes might have a considerable effect on the measurement of fine-scale urban NO2 plumes. The impact of satellite footprint resolution should be considered when using satellite observations in emission policy making, and the new downscaling approach can provide a reference uncertainty for the use of satellite NO2 measurements over most cities.


2005 ◽  
Vol 5 (3) ◽  
pp. 597-609 ◽  
Author(s):  
C. S. Singleton ◽  
C. E. Randall ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
W. Feng ◽  
...  

Abstract. The SLIMCAT three-dimensional chemical transport model (CTM) is used to infer chemical ozone loss from Polar Ozone and Aerosol Measurement (POAM) III observations of stratospheric ozone during the Arctic winter of 2002-2003. Inferring chemical ozone loss from satellite data requires quantifying ozone variations due to dynamical processes. To accomplish this, the SLIMCAT model was run in a "passive" mode from early December until the middle of March. In these runs, ozone is treated as an inert, dynamical tracer. Chemical ozone loss is inferred by subtracting the model passive ozone, evaluated at the time and location of the POAM observations, from the POAM measurements themselves. This "CTM Passive Subtraction" technique relies on accurate initialization of the CTM and a realistic description of vertical/horizontal transport, both of which are explored in this work. The analysis suggests that chemical ozone loss during the 2002-2003 winter began in late December. This loss followed a prolonged period in which many polar stratospheric clouds were detected, and during which vortex air had been transported to sunlit latitudes. A series of stratospheric warming events starting in January hindered chemical ozone loss later in the winter of 2003. Nevertheless, by 15 March, the final date of the analysis, ozone loss maximized at 425K at a value of about 1.2ppmv, a moderate amount of loss compared to loss during the unusually cold winters in the late-1990s. SLIMCAT was also run with a detailed stratospheric chemistry scheme to obtain the model-predicted loss. The SLIMCAT model simulation also shows a maximum ozone loss of 1.2ppmv at 425K, and the morphology of the loss calculated by SLIMCAT was similar to that inferred from the POAM data. These results from the recently updated version of SLIMCAT therefore give a much better quantitative description of polar chemical ozone loss than older versions of the same model. Both the inferred and modeled loss calculations show the early destruction in late December and the region of maximum loss descending in altitude through the remainder of the winter and early spring.


2014 ◽  
Vol 14 (1) ◽  
pp. 177-198 ◽  
Author(s):  
E. Emili ◽  
B. Barret ◽  
S. Massart ◽  
E. Le Flochmoen ◽  
A. Piacentini ◽  
...  

Abstract. Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. We consider a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE) in combination with a linear ozone chemistry scheme to examine the impact of assimilating observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI). The assimilation of the two instruments is performed by means of a variational algorithm (4D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozonesonde measurements to verify the presence of observations and model biases. Furthermore, a longer analysis of 6 months (July–December 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (root mean square error, RMSE) of the modeled ozone columns from 30 to 15% in the upper troposphere/lower stratosphere (UTLS, 70–225 hPa). The assimilation of IASI tropospheric ozone observations (1000–225 hPa columns, TOC – tropospheric O3 column) decreases the RMSE of the model from 40 to 20% in the tropics (30° S–30° N), whereas it is not effective at higher latitudes. Results are confirmed by a comparison with additional ozone data sets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be insensitive to the assimilation parameters. We conclude that the combination of a simplified ozone chemistry scheme with frequent satellite observations is a valuable tool for the long-term analysis of stratospheric and free-tropospheric ozone.


2014 ◽  
Vol 7 (10) ◽  
pp. 3431-3444 ◽  
Author(s):  
N. Bousserez

Abstract. The accuracy of space-based nitrogen dioxide (NO2) retrievals from solar backscatter radiances critically depends on a priori knowledge of the vertical profiles of NO2 and aerosol optical properties. This information is used to calculate an air mass factor (AMF), which accounts for atmospheric scattering and is used to convert the measured line-of-sight "slant" columns into vertical columns. In this study we investigate the impact of biomass burning emissions on the AMF in order to quantify NO2 retrieval errors in the Ozone Monitoring Instrument (OMI) products over these sources. Sensitivity analyses are conducted using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) model. The NO2 and aerosol profiles are obtained from a 3-D chemistry-transport model (GEOS-Chem), which uses the Fire Locating and Monitoring of Burning Emissions (FLAMBE) daily biomass burning emission inventory. Aircraft in situ data collected during two field campaigns, the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and the Dust and Biomass-burning Experiment (DABEX), are used to evaluate the modeled aerosol optical properties and NO2 profiles over Canadian boreal fires and West African savanna fires, respectively. Over both domains, the effect of biomass burning emissions on the AMF through the modified NO2 shape factor can be as high as −60%. A sensitivity analysis also revealed that the effect of aerosol and shape factor perturbations on the AMF is very sensitive to surface reflectance and clouds. As an illustration, the aerosol correction can range from −20 to +100% for different surface reflectances, while the shape factor correction varies from −70 to −20%. Although previous studies have shown that in clear-sky conditions the effect of aerosols on the AMF was in part implicitly accounted for by the modified cloud parameters, here it is suggested that when clouds are present above a surface layer of scattering aerosols, an explicit aerosol correction would be beneficial to the NO2 retrieval. Finally, a new method that uses slant column information to correct for shape-factor-related AMF error over NOx emission sources is proposed, with possible application to near-real-time OMI retrievals.


2009 ◽  
Vol 9 (5) ◽  
pp. 19035-19080 ◽  
Author(s):  
J. A. Fisher ◽  
D. J. Jacob ◽  
M. T. Purdy ◽  
M. Kopacz ◽  
P. Le Sager ◽  
...  

Abstract. We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003–2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month


2015 ◽  
Vol 8 (10) ◽  
pp. 8451-8479
Author(s):  
H. C. Kim ◽  
P. Lee ◽  
L. Judd ◽  
L. Pan ◽  
B. Lefer

Abstract. Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The National Aeronautics and Space Administration Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that OMI footprint pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20–30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCD using spatial information from the fine-scale model to adjust the spatial distribution, and also applied Averaging Kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are applied, with correlation coefficient R = 0.89. This study suggests that satellite footprint sizes might have a considerable effect on the measurement of fine-scale urban NO2 plumes. The impact of satellite footprint resolution should be considered when using satellite observations in emission policy making, and the new downscaling approach can provide a reference uncertainty for the use of satellite NO2 measurements over most cities.


2004 ◽  
Vol 4 (6) ◽  
pp. 7011-7045
Author(s):  
C. S. Singleton ◽  
C. E. Randall ◽  
M. P. Chipperfield ◽  
S. Davies ◽  
W. Feng ◽  
...  

Abstract. The SLIMCAT three-dimensional chemical transport model (CTM) is used to infer chemical ozone loss from Polar Ozone and Aerosol Measurement (POAM) III observations of stratospheric ozone during the Arctic winter of 2002–2003. Inferring chemical ozone loss from satellite data requires quantifying ozone variations due to dynamical processes. To accomplish this, the SLIMCAT model was run in a "passive" mode from early December until the middle of March. In these runs, ozone is treated as an inert, dynamical tracer. Chemical ozone loss is inferred by subtracting the model passive ozone, evaluated at the time and location of the POAM observations, from the POAM measurements themselves. This "CTM Passive Subtraction" technique relies on accurate initialization of the CTM and a realistic description of vertical/horizontal transport, both of which are explored in this work. The analysis suggests that chemical ozone loss during the 2002–2003 winter began in late December. This loss followed a prolonged period in which many polar stratospheric clouds were detected, and during which vortex air had been transported to sunlit latitudes. A series of stratospheric warming events starting in January hindered chemical ozone loss later in the winter of 2003. Nevertheless, by 15 March, the final date of the analysis, ozone loss maximized at 425 K at a value of about 1.2 ppmv, a moderate amount of loss compared to loss during the unusually cold winters in the late-1990s. SLIMCAT was also run with a detailed stratospheric chemistry scheme to obtain the model-predicted loss. The SLIMCAT model simulation also shows a maximum ozone loss of 1.2 ppmv at 425 K, and the morphology of the loss calculated by SLIMCAT was similar to that inferred from the POAM data. These results from the recently updated version of SLIMCAT therefore give a much better quantitative description of polar chemical ozone loss than older versions of the same model. Both the inferred and modeled loss calculations show the early destruction in late December and the region of maximum loss descending in altitude through the remainder of the winter and early spring.


Sign in / Sign up

Export Citation Format

Share Document