scholarly journals Significant recent warming over the northern Tibetan Plateau from ice core <i>δ</i><sup>18</sup>O records

2016 ◽  
Vol 12 (2) ◽  
pp. 201-211 ◽  
Author(s):  
W. An ◽  
S. Hou ◽  
W. Zhang ◽  
Y. Wang ◽  
Y. Liu ◽  
...  

Abstract. Stable oxygen isotopic records in ice cores provide valuable information about past temperature, especially for regions with scarce instrumental measurements. This paper presents the δ18O result of an ice core drilled to bedrock from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). We reconstructed the temperature series for 1951–2008 from the δ18O records. In addition, we combined the ZK δ18O records with those from three other ice cores in the northern TP (Muztagata, Puruogangri, and Geladaindong) to reconstruct a regional temperature history for the period 1951–2002 (RTNTP). The RTNTP showed significant warming at 0.51 ± 0.07 °C (10 yr)−1 since 1970, a higher rate than the trend of instrumental records of the northern TP (0.43 ± 0.08 °C (10 yr)−1) and the global temperature trend (0.27 ± 0.03°C (10 yr)−1) at the same time. In addition, the ZK temperature record, with extra length until 2008, seems to suggest that the rapid elevation-dependent warming continued for this region during the last decade, when the mean global temperature showed very little change. This could provide insights into the behavior of the recent warming hiatus at higher elevations, where instrumental climate records are lacking.

2015 ◽  
Vol 11 (4) ◽  
pp. 2701-2728 ◽  
Author(s):  
W. An ◽  
S. Hou ◽  
W. Zhang ◽  
Y. Wang ◽  
Y. Liu ◽  
...  

Abstract. Stable oxygen isotopic records in ice cores provide valuable information about past temperature, especially for regions with scarce instrumental measurements. This paper presents the δ18O result of an ice core drilled to bedrock from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). Combining the ZK δ18O records with those from three other ice cores in the region (Muztagata, Puruogangri and Geladaindong), we reconstructed the regional temperature history covering 1951–2008 for the northern TP. The reconstruction showed significant warming at 1.12 ± 0.08 to 1.31 ± 0.10 °C(10 yr)−1 since 1970, a much higher rate than the trend of instrumental records of the northern TP (0.45 ± 0.06 °C(10 yr)−1) and the global temperature trend (0.28 ± 0.02 °C(10 yr)−1) at the same time. Moreover, the rapid warming remained for this region during the last decade, when the mean global temperature showed very little change. Our study suggests that the temperature variations at high elevations could behave differently due to specific topographic and circulation mechanisms.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenling An ◽  
Shugui Hou ◽  
Wangbin Zhang ◽  
Shuangye Wu ◽  
Hao Xu ◽  
...  

Abstract Many studies have reported enhanced warming trend on the Tibetan Plateau (TP), even during the warming hiatus period. However, most of these studies are based on instrumental data largely collected from the eastern TP, whereas the temperature trend over the extensive northwestern TP remains uncertain due to few meteorological stations. Here we combined the stable isotopic δ18O record of an ice core recovered in 2012 from the Chongce glacier with the δ18O records of two other ice cores (i.e., Muztagata and Zangser Kangri) in the same region to establish a regional temperature series for the northwestern TP. The reconstruction shows a significant warming trend with a rate of 0.74 ± 0.12 °C/decade for the period 1970–2000, but a decreasing trend from 2001 to 2012. This is consistent with the reduction of warming rates during the recent decade observed at the only two meteorological stations on the northwestern TP, even though most stations on the eastern TP have shown persistent warming during the same period. Our results suggest a possible recent warming hiatus on the northwestern TP. This could have contributed to the relatively stable status of glaciers in this region.


2008 ◽  
Vol 4 (3) ◽  
pp. 175-180 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from the northern Tibetan Plateau has constrained our understanding of precipitation variations in this region. We drilled an ice core on the Puruogangri Ice Field in the central Tibetan Plateau in 2000 to reveal the precipitation variations. The well dated part of the core extends back to AD 1600, allowing us to construct a 400-year annual accumulation record. This record shows that the central Tibetan plateau experienced a drier period with an average annual precipitation of ~300 mm in the 19th century, compared to ~450 mm in the wetter periods during 1700–1780 and the 20th century. This pattern agrees with precipitation reconstructions from the Dunde and Guliya ice cores on the northern Plateau but differs from that found in the Dasuopu ice cores from the southern Plateau The north-south contrasts in precipitation reconstruction reveals difference in moisture origin between the south Tibetan Plateau dominated by the Asian monsoon and the north Tibetan Plateau dominated by the continental recycling and the westerlies.


2007 ◽  
Vol 46 ◽  
pp. 362-366 ◽  
Author(s):  
Tandong Yao ◽  
Keqin Duan ◽  
L.G. Thompson ◽  
Ninglian Wang ◽  
Lide Tian ◽  
...  

AbstractTemperature variation on the Tibetan Plateau over the last 1000 years has been inferred using a composite δ18O record from four ice cores. Data from a new ice core recovered from the Puruogangri ice field in the central Tibetan Plateau are combined with those from three other cores (Dunde, Guliya and Dasuopu) recovered previously. The ice-core δ18O composite record indicates that the temperature change on the whole Tibetan Plateau is similar to that in the Northern Hemisphere on multi-decadal timescales except that there is no decreasing trend from AD 1000 to the late 19th century. The δ18O composite record from the northern Tibetan Plateau, however, indicates a cooling trend from AD 1000 to the late 19th century, which is more consistent with the Northern Hemisphere temperature reconstruction. The δ18O composite record reveals the existence of the Medieval Warm Period and the Little Ice Age (LIA) on the Tibetan Plateau. However, on the Tibetan Plateau the LIA is not the coldest period during the last millennium as in other regions in the Northern Hemisphere. The present study indicates that the 20th-century warming on the Tibetan Plateau is abrupt, and is warmer than at any time during the past 1000 years.


2008 ◽  
Vol 4 (1) ◽  
pp. 233-248 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from northern Tibetan Plateau has constrained the understanding of precipitation variation in this region. An ice core drilled from the Puruogangri Ice Field on central Tibetan Plateau in the year 2000 helped reveal the precipitation variations since AD 1600. Analysis of the annual accumulation data presented precipitation changes from AD 1600, indicative of wet and dry periods in the past 400 year in the central Tibetan Plateau. Accordingly, the 18th and 20th centuries experienced high precipitation period, whilst the 19th century experienced low precipitation period. Such a feature was consistent with precipitation recorded in ice cores from Dunde and Guliya Glaciers, northern Tibetan Plateau. Besides, the results also pointed to consistency in precipitation-temperature correlation on the northern Tibetan Plateau, in a way that temperature and precipitation were positively correlated. But this feature was contrary to the relationship revealed from Dasuopu ice cores, southern Tibetan Plateau, where temperature and precipitation were negatively correlated. The north-south contrast in precipitation amount and its relationship with temperature may shed light on the reconstruction of Asian monsoon since AD 1600.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenling An ◽  
Shugui Hou ◽  
Wangbin Zhang ◽  
Shuangye Wu ◽  
Hao Xu ◽  
...  

1995 ◽  
Vol 21 ◽  
pp. 189-195 ◽  
Author(s):  
P. N. Lin ◽  
L.G. Thompson ◽  
M.E. Davis ◽  
E. Mosley-Thompson

Since 1987, ice cores have been drilled from the Dunde and Guliya ice caps on the Tibetan Plateau, western China. Here, the oxygen isotopic (δ18O) records for the last 1000 years from both these cores are compiled and compared. Using surface temperature observations since the mid-1960s from meteorological stations on the plateau and δ18O measured on precipitation collected contemporaneously, the empirical relationship: δ18O = 0.6 T s – 12 is established. δ18O appears to serve as a reasonable proxy for regional surface temperatures and a reasonable basis for reconstructing 1000a proxy temperature records from Dunde and Guliya. The reconstructed temperature histories for Dunde (on the eastern Tibetan Plateau) and Guliya (on the western Tibetan Plateau) show some centennial-scale similarities, but reveal quite different histories for higher-frequency variability over the last millennium. The ice-core δ18O histories from Dunde and Guliya are compared with a tree-ring index from western China and the dust-fall record from eastern China, but show no consistent relationship. The most prominent similarity between the reconstructed temperature histories for Dunde and Guliya is the marked warming of the last few decades. From the 1000a perspective provided be these ice-core records, the recent warming on Dunde is unique in its strength and persistence; however, the warming on Guliya (inferred from 18O enrichment) is more recent (since 1985) and not unprecedented. This recent warming over the Tibetan Plateau is evident in the limited meteorological records.


1995 ◽  
Vol 21 ◽  
pp. 189-195 ◽  
Author(s):  
P. N. Lin ◽  
L.G. Thompson ◽  
M.E. Davis ◽  
E. Mosley-Thompson

Since 1987, ice cores have been drilled from the Dunde and Guliya ice caps on the Tibetan Plateau, western China. Here, the oxygen isotopic (δ18O) records for the last 1000 years from both these cores are compiled and compared. Using surface temperature observations since the mid-1960s from meteorological stations on the plateau and δ18O measured on precipitation collected contemporaneously, the empirical relationship: δ18O = 0.6 Ts – 12 is established. δ18O appears to serve as a reasonable proxy for regional surface temperatures and a reasonable basis for reconstructing 1000a proxy temperature records from Dunde and Guliya. The reconstructed temperature histories for Dunde (on the eastern Tibetan Plateau) and Guliya (on the western Tibetan Plateau) show some centennial-scale similarities, but reveal quite different histories for higher-frequency variability over the last millennium. The ice-core δ18O histories from Dunde and Guliya are compared with a tree-ring index from western China and the dust-fall record from eastern China, but show no consistent relationship. The most prominent similarity between the reconstructed temperature histories for Dunde and Guliya is the marked warming of the last few decades. From the 1000a perspective provided be these ice-core records, the recent warming on Dunde is unique in its strength and persistence; however, the warming on Guliya (inferred from 18O enrichment) is more recent (since 1985) and not unprecedented. This recent warming over the Tibetan Plateau is evident in the limited meteorological records.


2021 ◽  
Vol 15 (4) ◽  
pp. 2109-2114
Author(s):  
Shugui Hou ◽  
Wangbin Zhang ◽  
Ling Fang ◽  
Theo M. Jenk ◽  
Shuangye Wu ◽  
...  

Abstract. There is considerable controversy regarding the age ranges of Tibetan ice cores. The Guliya ice core was reported to reach as far back as ∼760 ka (kiloannum, i.e. 1000 years), whereas chronologies of all other Tibetan cores cover at most the Holocene. Here we present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.570.56 ka and 7.46±1.461.79 ka for the ZK and SLNS ice core respectively, further constraining the time range accessible by Tibetan ice cores to the Holocene.


1993 ◽  
Vol 7 (1-3) ◽  
pp. 145-156 ◽  
Author(s):  
L.G. Thompson ◽  
E. Mosley-Thompson ◽  
M. Davis ◽  
P.N. Lin ◽  
T. Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document