scholarly journals Significant recent warming over the northern Tibetan Plateau from ice core δ<sup>18</sup>O records

2015 ◽  
Vol 11 (4) ◽  
pp. 2701-2728 ◽  
Author(s):  
W. An ◽  
S. Hou ◽  
W. Zhang ◽  
Y. Wang ◽  
Y. Liu ◽  
...  

Abstract. Stable oxygen isotopic records in ice cores provide valuable information about past temperature, especially for regions with scarce instrumental measurements. This paper presents the δ18O result of an ice core drilled to bedrock from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). Combining the ZK δ18O records with those from three other ice cores in the region (Muztagata, Puruogangri and Geladaindong), we reconstructed the regional temperature history covering 1951–2008 for the northern TP. The reconstruction showed significant warming at 1.12 ± 0.08 to 1.31 ± 0.10 °C(10 yr)−1 since 1970, a much higher rate than the trend of instrumental records of the northern TP (0.45 ± 0.06 °C(10 yr)−1) and the global temperature trend (0.28 ± 0.02 °C(10 yr)−1) at the same time. Moreover, the rapid warming remained for this region during the last decade, when the mean global temperature showed very little change. Our study suggests that the temperature variations at high elevations could behave differently due to specific topographic and circulation mechanisms.

2016 ◽  
Vol 12 (2) ◽  
pp. 201-211 ◽  
Author(s):  
W. An ◽  
S. Hou ◽  
W. Zhang ◽  
Y. Wang ◽  
Y. Liu ◽  
...  

Abstract. Stable oxygen isotopic records in ice cores provide valuable information about past temperature, especially for regions with scarce instrumental measurements. This paper presents the δ18O result of an ice core drilled to bedrock from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). We reconstructed the temperature series for 1951–2008 from the δ18O records. In addition, we combined the ZK δ18O records with those from three other ice cores in the northern TP (Muztagata, Puruogangri, and Geladaindong) to reconstruct a regional temperature history for the period 1951–2002 (RTNTP). The RTNTP showed significant warming at 0.51 ± 0.07 °C (10 yr)−1 since 1970, a higher rate than the trend of instrumental records of the northern TP (0.43 ± 0.08 °C (10 yr)−1) and the global temperature trend (0.27 ± 0.03°C (10 yr)−1) at the same time. In addition, the ZK temperature record, with extra length until 2008, seems to suggest that the rapid elevation-dependent warming continued for this region during the last decade, when the mean global temperature showed very little change. This could provide insights into the behavior of the recent warming hiatus at higher elevations, where instrumental climate records are lacking.


2008 ◽  
Vol 4 (3) ◽  
pp. 175-180 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from the northern Tibetan Plateau has constrained our understanding of precipitation variations in this region. We drilled an ice core on the Puruogangri Ice Field in the central Tibetan Plateau in 2000 to reveal the precipitation variations. The well dated part of the core extends back to AD 1600, allowing us to construct a 400-year annual accumulation record. This record shows that the central Tibetan plateau experienced a drier period with an average annual precipitation of ~300 mm in the 19th century, compared to ~450 mm in the wetter periods during 1700–1780 and the 20th century. This pattern agrees with precipitation reconstructions from the Dunde and Guliya ice cores on the northern Plateau but differs from that found in the Dasuopu ice cores from the southern Plateau The north-south contrasts in precipitation reconstruction reveals difference in moisture origin between the south Tibetan Plateau dominated by the Asian monsoon and the north Tibetan Plateau dominated by the continental recycling and the westerlies.


2007 ◽  
Vol 46 ◽  
pp. 362-366 ◽  
Author(s):  
Tandong Yao ◽  
Keqin Duan ◽  
L.G. Thompson ◽  
Ninglian Wang ◽  
Lide Tian ◽  
...  

AbstractTemperature variation on the Tibetan Plateau over the last 1000 years has been inferred using a composite δ18O record from four ice cores. Data from a new ice core recovered from the Puruogangri ice field in the central Tibetan Plateau are combined with those from three other cores (Dunde, Guliya and Dasuopu) recovered previously. The ice-core δ18O composite record indicates that the temperature change on the whole Tibetan Plateau is similar to that in the Northern Hemisphere on multi-decadal timescales except that there is no decreasing trend from AD 1000 to the late 19th century. The δ18O composite record from the northern Tibetan Plateau, however, indicates a cooling trend from AD 1000 to the late 19th century, which is more consistent with the Northern Hemisphere temperature reconstruction. The δ18O composite record reveals the existence of the Medieval Warm Period and the Little Ice Age (LIA) on the Tibetan Plateau. However, on the Tibetan Plateau the LIA is not the coldest period during the last millennium as in other regions in the Northern Hemisphere. The present study indicates that the 20th-century warming on the Tibetan Plateau is abrupt, and is warmer than at any time during the past 1000 years.


2008 ◽  
Vol 4 (1) ◽  
pp. 233-248 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from northern Tibetan Plateau has constrained the understanding of precipitation variation in this region. An ice core drilled from the Puruogangri Ice Field on central Tibetan Plateau in the year 2000 helped reveal the precipitation variations since AD 1600. Analysis of the annual accumulation data presented precipitation changes from AD 1600, indicative of wet and dry periods in the past 400 year in the central Tibetan Plateau. Accordingly, the 18th and 20th centuries experienced high precipitation period, whilst the 19th century experienced low precipitation period. Such a feature was consistent with precipitation recorded in ice cores from Dunde and Guliya Glaciers, northern Tibetan Plateau. Besides, the results also pointed to consistency in precipitation-temperature correlation on the northern Tibetan Plateau, in a way that temperature and precipitation were positively correlated. But this feature was contrary to the relationship revealed from Dasuopu ice cores, southern Tibetan Plateau, where temperature and precipitation were negatively correlated. The north-south contrast in precipitation amount and its relationship with temperature may shed light on the reconstruction of Asian monsoon since AD 1600.


2015 ◽  
Vol 9 (3) ◽  
pp. 1213-1222 ◽  
Author(s):  
S. Kang ◽  
F. Wang ◽  
U. Morgenstern ◽  
Y. Zhang ◽  
B. Grigholm ◽  
...  

Abstract. Two ice cores were retrieved from high elevations (~5800 m a.s.l.) at Mt. Nyainqêntanglha and Mt. Geladaindong in the southern and central Tibetan Plateau region. The combined tracer analysis of tritium (3H), 210Pb and mercury, along with other chemical records, provided multiple lines of evidence supporting that the two coring sites had not received net ice accumulation since at least the 1950s and 1980s, respectively. These results implied an annual ice loss rate of more than several hundred millimeter water equivalent over the past 30–60 years. Both mass balance modeling at the sites and in situ data from the nearby glaciers confirmed a continuously negative mass balance (or mass loss) in the region due to dramatic warming in recent decades. Along with a recent report on Naimona'nyi Glacier in the Himalayas, the findings suggest that the loss of accumulation area of glacier is a possibility from the southern to central Tibetan Plateau at high elevations, probably up to about 5800 m a.s.l. This mass loss raises concerns over the rapid rate of glacier ice loss and associated changes in surface glacier runoff, water availability, and sea levels.


2021 ◽  
Vol 15 (4) ◽  
pp. 2109-2114
Author(s):  
Shugui Hou ◽  
Wangbin Zhang ◽  
Ling Fang ◽  
Theo M. Jenk ◽  
Shuangye Wu ◽  
...  

Abstract. There is considerable controversy regarding the age ranges of Tibetan ice cores. The Guliya ice core was reported to reach as far back as ∼760 ka (kiloannum, i.e. 1000 years), whereas chronologies of all other Tibetan cores cover at most the Holocene. Here we present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.570.56 ka and 7.46±1.461.79 ka for the ZK and SLNS ice core respectively, further constraining the time range accessible by Tibetan ice cores to the Holocene.


1991 ◽  
Vol 37 (125) ◽  
pp. 11-22 ◽  
Author(s):  
E. Mosley-Thompson ◽  
J. Dai ◽  
L. G. Thompson ◽  
P. M. Grootes ◽  
James K. Arbogast ◽  
...  

Abstract The quality and utility of the records of oxygen-isotopic abundances, dust concentrations and anionic concentrations preserved in the ice at Siple Station (75°55′ S, 84° 15′ W) are assessed from four shallow (20 m) cores. The combination of high accumulation (0.56 m a−1 w.e.) and low mean annual temperature (—24°C) preserves the prominent seasonal variations in δ18Ο which are very spatially coherent. Sulfate concentrations vary seasonally and, in conjunction with δ18Ο, will allow accurate dating of deeper cores from Siple Station. The concentrations of insoluble dust are the lowest measured in Antarctica, making Siple Station an excellent location to examine large increases in atmospheric tubidity. The seasonal variations and annual fluxes of the anions are examined for the last two decades (AD 1966–85) with regard to probable sources. An unusually high sulfate flux in 1976 may reflect the February 1975 eruption of Mount Ngauruhoe, New Zealand. No annual signal in nitrate concentration is confirmed and no unusually high nitrate fluxes support the suggestion of nitrate production by large solar flares. However, nitrate flux is higher for the latter half of the 1970s and early 1980s, possibly reflecting the recent loss of stratospheric ozone. Finally, comparison of the δ18O record with available surface-temperature data (AD 1957–85) reveals that multi-year trends along the western coast of the Antarctic Peninsula are recorded at Siple. More importantly, comparison with areally weighted temperature reconstructions suggests that the δ18Ο record may reflect larger-scale, persistent trends in the high southern latitudes. The strong spatial coherence of the preserved records, the potential for accurate dating, and possible relevance to larger-scale processes make Siple Station an excellent site for paleoenvironmental reconstruction from ice cores.


1995 ◽  
Vol 21 ◽  
pp. 225-230 ◽  
Author(s):  
M. E. Davis ◽  
L. G. Thompson ◽  
E. Mosley-Thompson ◽  
P. N. Lin ◽  
V. N. Mikhalenko ◽  
...  

Ice cores recently drilled to bedrock on the col of Huascarán (9°06′ S, 77°36′ W, 6047 m a.s.l.) offer the potential for a long, annually resolved climate record from tropical South America. This paper presents the record from 1950 to 1993 preserved in microparticle and nitrate concentrations and oxygen-isotopic ratios. Average monthly temperatures from a satellite-linked automatic weather station installed on nearby Hualcán in 1991 are presented. Annual temperatures from local high-altitude meteorological stations, along with the annual Huascarán isotopic record, show a warming trend over the last two decades. The marked preservation of the climate record in oxygen-isotopic ratios on Huascarán is absent at lower-elevation sites, which have been affected by the recent warming. This paper demonstrates the establishment of a time-scale for the Huascarán core, the preservation of the climatic signal with depth and the linkage of the ice-core “proxy-climate” parameters with measured climatic variations.


2020 ◽  
Author(s):  
Xiaomin Fang ◽  
Albert Galy ◽  
Yibo Yang ◽  
Weilin Zhang ◽  
Chengcheng Ye ◽  
...  

&lt;p&gt;The CO&lt;sub&gt;2&lt;/sub&gt; degassing by plate tectonic process has long been thought to be balanced by weathering of silicate rocks on continents, keeping the Earth a relative stable global carbon cycle and temperature suitable for life creation, survival and evolution. The uplift of the Tibetan Plateau (TP) is hypothesized to enhance erosion and silicate weathering and organic carbon burial, thus cool the global temperature. However, the imbalance resulting from accelerated CO&lt;sub&gt;2&lt;/sub&gt; consumption by uplift of the TP and a relatively stable CO&lt;sub&gt;2&lt;/sub&gt; input from volcanic degassing during the Cenozoic should have depleted atmospheric CO&lt;sub&gt;2&lt;/sub&gt; within a few million years; therefore, a negative feedback mechanism must have stabilised the carbon cycle. Here, we present the first almost complete Paleogene silicate weathering intensity (SWI) records from continental rocks in the northern TP, based on detailed volcanic ash and paleomagnetic dating of two continuous Cenozoic sections in the Xining and Qaidam Basin in NW China. They show that the Paleogene silicate weathering in this tectonically inactive area was modulated by global temperature. These findings suggest that Paleogene global cooling was also strongly influenced by the temperature feedback mechanism that regulated silicate weathering rates and hydrological cycles and maintained a nearly stable carbon cycle. It acted as a negative feedback through decreasing CO&lt;sub&gt;2&lt;/sub&gt; consumption resulting from the lower SWI and the kinetic limitations in tectonically inactive areas that followed the global cooling. This means that the enhanced erosion and silicate weathering by the uplift of the south and central Tibetan Plateau, thus accelerated CO&lt;sub&gt;2&lt;/sub&gt; consumption, must be compensated by reducing CO&lt;sub&gt;2&lt;/sub&gt; consumption of the rest vast continents through their reduced silicate weathering from cooling.&lt;/p&gt;


2006 ◽  
Vol 43 ◽  
pp. 29-33 ◽  
Author(s):  
Ninglian Wang ◽  
Tandong Yao ◽  
L.G. Thompson ◽  
M.E. Davis

AbstractIn this paper, the ratio of dust layer thickness to ice thickness, i.e. the dust ratio, is used as a proxy for dust event frequency in the Malan ice core from the northern Tibetan Plateau. We reconstructed a ∼900 year record that reveals that the 1770s–1880s was a prolonged period of high dust ratios, which indicates that dust events occurred frequently from the late 18th century through the 19th century. Statistical analysis of the variations in the dust ratios and δ18O (which is a good proxy for air temperature) in the Malan ice core shows that there is a strong negative correlation between them. This suggests that dust events occur more frequently in cold periods than in warm periods.


Sign in / Sign up

Export Citation Format

Share Document