scholarly journals Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial

2016 ◽  
Vol 12 (2) ◽  
pp. 575-593 ◽  
Author(s):  
Andrea Miebach ◽  
Phoebe Niestrath ◽  
Patricia Roeser ◽  
Thomas Litt

Abstract. The Marmara region in northwestern Turkey provides a unique opportunity for studying the vegetation history in response to climate changes and anthropogenic impacts because of its location between different climate and vegetation zones and its long settlement history. Geochemical and mineralogical investigations of the largest lake in the region, Lake Iznik, already registered climate-related changes of the lake level and the lake mixing. However, a palynological investigation encompassing the Late Pleistocene to Middle Holocene was still missing. Here, we present the first pollen record of the last ca. 31 ka cal BP (calibrated kilo years before 1950) inferred from Lake Iznik sediments as an independent proxy for paleoecological reconstructions. Our study reveals that the vegetation in the Iznik area changed generally between (a) steppe during glacials and stadials indicating dry and cold climatic conditions, (b) forest-steppe during interstadials indicating milder and moister climatic conditions, and (c) oak-dominated mesic forest during interglacials indicating warm and moist climatic conditions. Moreover, a pronounced succession of pioneer trees, cold temperate, warm temperate, and Mediterranean trees appeared since the Lateglacial. Rapid climate changes, which are reflected by vegetation changes, can be correlated with Dansgaard-Oeschger (DO) events such as DO-4, DO-3, and DO-1, the Younger Dryas, and probably also the 8.2 event. Since the mid-Holocene, the vegetation was influenced by anthropogenic activities. During early settlement phases, the distinction between climate-induced and human-induced changes of the vegetation is challenging. Still, evidence for human activities consolidates since the Early Bronze Age (ca. 4.8 ka cal BP): cultivated trees, crops, and secondary human indicator taxa appeared, and forests were cleared. Subsequent fluctuations between extensive agricultural uses and regenerations of the natural vegetation become apparent.

2015 ◽  
Vol 11 (6) ◽  
pp. 5157-5201 ◽  
Author(s):  
A. Miebach ◽  
P. Niestrath ◽  
P. Roeser ◽  
T. Litt

Abstract. The Marmara region in northwestern Turkey provides a unique opportunity for studying the vegetation history in response to climate changes and anthropogenic impacts because of its location between different climate and vegetation zones and its long settlement history. Geochemical and mineralogical investigations of the largest lake in the region, Lake Iznik, already registered climate related changes of the lake level and the lake mixing. However, a palynological investigation encompassing the Late Pleistocene to Middle Holocene was still missing. Here, we present the first pollen record of the last ca. 31 ka cal BP (calibrated kilo years before 1950) inferred from Lake Iznik sediments as an independent proxy for paleoecological reconstructions. Our study reveals that the vegetation in the Iznik area changed generally between steppe during glacial/stadial conditions, forest-steppe during interstadial conditions, and oak dominated mesic forest during interglacial conditions. Moreover, a pronounced succession of pioneer trees, cold temperate, warm temperate, and Mediterranean trees appeared since the Lateglacial. Rapid climate changes, which are reflected by vegetation changes, can be correlated with Dansgaard–Oeschger (DO) events such as DO-4, DO-3, and DO-1, the Younger Dryas, and probably also the 8.2 event. Since the mid-Holocene, the vegetation was influenced by anthropogenic activities. During early settlement phases, the distinction between climate-induced and human-induced changes of the vegetation is challenging. Still, evidence for human activities consolidates since the Early Bronze Age (ca. 4.8 ka cal BP): cultivated trees, crops, and secondary human indicator taxa appeared, and forests got cleared. Subsequent fluctuations between extensive agricultural use and regeneration of the natural vegetation become apparent.


2015 ◽  
Vol 11 (5) ◽  
pp. 4505-4567 ◽  
Author(s):  
B. Gambin ◽  
V. Andrieu-Ponel ◽  
F. Médail ◽  
N. Marriner ◽  
O. Peyron ◽  
...  

Abstract. This paper investigates the Holocene vegetation dynamics for Burmarrad in north-west Malta and provides a pollen-based quantitative palaeoclimatic reconstruction for this centrally located Mediterranean archipelago. The pollen record from this site provides new insight into the vegetation changes from 7280 to 1730 cal BP which correspond well with other regional records. The climate reconstruction for the area also provides strong correlation with southern (below 40° N) Mediterranean sites. Our interpretation suggests an initially open landscape during the early Neolithic, surrounding a large palaeobay, developing into a dense Pistacia scrubland ca. 6700 cal BP. From about 4450 cal BP the landscape once again becomes open, coinciding with the start of the Bronze Age on the archipelago. This period is concurrent with increased climatic instability (between 4500 and 3700 cal BP) which is followed by a gradual decrease in summer moisture availability in the late Holocene. During the early Roman occupation period (1972 to 1730 cal BP) the landscape remains generally open with a moderate increase in Olea. This increase, corresponds to archaeological evidence for olive oil production in the area, along with increases in cultivated crop taxa and associated ruderal species, as well as a rise in fire events. The Maltese archipelago provides important insight into vegetation, human impacts and climatic changes in an island context during the Holocene.


2016 ◽  
Vol 12 (2) ◽  
pp. 273-297 ◽  
Author(s):  
B. Gambin ◽  
V. Andrieu-Ponel ◽  
F. Médail ◽  
N. Marriner ◽  
O. Peyron ◽  
...  

Abstract. This paper investigates the Holocene vegetation dynamics for Burmarrad in Northwest Malta and provides a pollen-based quantitative palaeoclimatic reconstruction for this centrally located Mediterranean archipelago. The pollen record from this site provides new insight into the vegetation changes from 7280 to 1730 cal BP which correspond well with other regional records. The climate reconstruction for the area also provides strong correlation with southern (below 40° N) Mediterranean sites. Our interpretation suggests an initially open landscape during the early Neolithic, surrounding a large palaeobay, developing into a dense Pistacia scrubland ca. 6700 cal BP. From about 4450 cal BP the landscape once again becomes open, coinciding with the start of the Bronze Age on the archipelago. This period is concurrent with increased climatic instability (between 4500 and 3700 cal BP) which is followed by a gradual decrease in summer moisture availability in the late Holocene. During the early Roman occupation period (1972–1730 cal BP) the landscape remains generally open with a moderate increase in Olea. This increase corresponds to archaeological evidence for olive oil production in the area, along with increases in cultivated crop taxa and associated ruderal species, as well as a rise in fire events. The Maltese archipelago provides important insight into vegetation, human impacts, and climatic changes in an island context during the Holocene.


The Holocene ◽  
2021 ◽  
pp. 095968362199464
Author(s):  
Karsten Schittek ◽  
Lelaina Teichert ◽  
Katrin Geiger ◽  
Klaus-Holger Knorr ◽  
Simone Schneider

A Late Pleistocene/Holocene paleoenvironmental record was obtained from the Rouer peatland (5°54′E, 49°45′N; 270 m a.s.l.), located in the Gutland area of southern Luxembourg. A total of six sediment samples were AMS radiocarbon-dated to obtain an age-depth model. XRF analyses and analyses of geochemical proxies of organic matter (TOC, TN, δ13C, δ15N) were conducted to identify major paleoenvironmental changes in the record. Pollen analysis reveals insights into the vegetation history throughout the last 14,000 cal. yr BP. The record offers unique insights into the evolution of local organic sediment/peat accumulation, as well as into the environmental history of the Gutland region and beyond. The accumulation of organic sediment and peat started at about 13,800 cal. yr BP before present. Until about 6000 cal. yr BP, periods of apparently stable climatic conditions had been interrupted repeatedly by pronounced episodes with increased input of minerogenic matter into the peat matrix (12,700–11,800 cal. yr BP; 11,500–11,300 cal. yr BP; 11,100–10,800 cal. yr BP; 9300 cal. yr BP; 8200 cal. yr BP), indicated by sudden increases of Ti/coh values. After 6000 cal. yr BP, environmental conditions stabilized. Between 4200 and 2800 cal. yr BP, during the Bronze Age, changes in the pollen spectrum indicate an increasing clearance of woodlands. Since the Roman period, an ongoing intensification of grassland farming and agriculture is evidenced. Lowest tree species abundances are witnessed during the Middle Ages. The Modern Era is characterized by enhanced sediment input due to soil erosion. In short, this record complements the Late Pleistocene/Holocene climatic history of the Gutland area and demonstrates that fen peat deposits can be valuable high-resolution paleoclimate archives.


2011 ◽  
Vol 3 (4) ◽  
Author(s):  
Katalin Náfrádi ◽  
Elvira Bodor ◽  
Tünde Törőcsik ◽  
Pál Sümegi

AbstractThe significance of geoarchaeological investigations is indisputable in reconstructing the former environment and in studying the relationship between humans and their surroundings. Several disciplines have developed during the last few decades to give insight into earlier time periods and their climatic conditions (e.g. palynology, malacology, archaeobotany, phytology and animal osteology). Charcoal and pollen analytical studies from the rescue excavation of the MO motorway provide information about the vegetation changes of the past. These methods are used to reconstruct the environment of the former settlements and to detect the human impact and natural climatic changes. The sites examined span the periods of the Late-Copper Age, Late-Bronze Age, Middle-Iron Age, Late-Iron Age, Sarmatian period, Late Sarmatian period, Migration period, Late-Migration period and Middle Ages. The vegetation before the Copper Age is based only on pollen analytical data. Anthracological results show the overall dominance of Quercus and a great number of Ulmus, Fraxinus, Acer, Fagus, Alnus and Populus/Salix tree fossils, as well as the residues of fruit trees present in the charred wood assemblage.


The Holocene ◽  
2020 ◽  
Vol 30 (7) ◽  
pp. 1016-1028 ◽  
Author(s):  
Julia Unkelbach ◽  
Kaoru Kashima ◽  
Gaadan Punsalpaamuu ◽  
Lyudmila Shumilovskikh ◽  
Hermann Behling

The ‘Altai Tavan Bogd’ National Park in the north-western part of the Mongolian Altai, Central Asia, is located in a forest-steppe ecosystem. It occurs under the influence of extreme continental and montane climate and is sensitive to natural and anthropogenic impacts. High-resolution (<20 years per sample) multi-proxy data of pollen, non-pollen palynomorphs (NPPs), macro-charcoal, diatoms, and XRF scanning from radiocarbon-dated lacustrine sediments reveal various environmental changes and the impact of different settlement periods for the late-Holocene. From 1350 to 820 cal. yr BP (AD 600–1130), the distribution of grass steppe indicates a climate similar to present-day conditions. Rapid improvements of climatic conditions (e.g. increased rainfall events) possibly favored a recovery of forest-steppe encouraging nomadic movements into alpine areas. In the period from 820 to 400 cal. yr BP (AD 1130–1550), the decline of forested areas suggests an increasingly drier and possibly colder climate. Some political shifts during the Mongol Empire (744–582 cal. yr BP; AD 1206–1368) favored variations in nomadic grazing habits. After 400 cal. yr BP (AD 1550), moisture and temperature increased slightly, and from ca. 40 cal. yr BP (AD 1910) to present, annual temperature continued to increase more markedly favoring an additional water availability due to permafrost degradation. Diatom data suggest several intervals of increased water availability in all periods which might have caused erosion due to heavier rainfall events or increased snow melt. Immediately after most of these high-water intervals, NPP data reveal periods of increased grazing activities in the area.


2011 ◽  
Vol 41 (4) ◽  
pp. 513-520 ◽  
Author(s):  
Alejandra Leal ◽  
Tibisay Perez ◽  
Bibiana Bilbao

A palynological analysis of an organic paleosol found at 150-125 cm depth in a Mauritia swamp from the Eastern Orinoco Llanos is presented. The 25 cm pollen record summarizes the vegetation history during the Early Holocene, from 10,225 to 7,800 calendar yr BP. The vegetation was characterized by a Poaceae marsh, where Asteraceae, Melastomataceae, Schefflera-type and Phyllanthus were the most abundant shrubs and trees. Pollen-types richness was lower than that recorded today in similar environments, and Mauritia pollen was absent. Results suggest that climate was as humid as present during the beginning of the Holocene, with a decreasing trend in humidity from around 8,000-7,000 yr BP, in coincidence with the beginning of the "Early-Mid-Holocene Dryness" that affected deeply the Amazon Basin and neighboring areas. Dry climatic conditions could have existed in the study site until the Mid-Late Holocene when a Mauritia swamp developed, and humid conditions similar to present established. Main climate phases inferred in our study site fit well with regional trends recorded in other places located north Amazon Basin. However, conclusions are still limited by the lack of additional Quaternary records in the Orinoco Llanos area, avoiding regional correlations.


2007 ◽  
Vol 67 (3) ◽  
pp. 394-399 ◽  
Author(s):  
Andrei A. Andreev ◽  
Roberto Pierau ◽  
Ivan A. Kalugin ◽  
Andrei V. Daryin ◽  
Lyubov G. Smolyaninova ◽  
...  

AbstractA high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.


1985 ◽  
Vol 23 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Cathy W. Barnosky

A 33,000-yr pollen record from Carp Lake provides information on the vegetation history of the forest/steppe border in the southwestern Columbia Basin. The site is located in the Pinus ponderosa Zone but through much of late Quaternary time the area was probably treeless. Pollen assemblages in sediments dating from 33,000 to 23,500 yr B.P. suggest a period of temperate climate and steppe coinciding with the end of the Olympia Interglaciation. The Fraser Glaciation (ca. 25,000–10,000 yr B.P.) was a period of periglacial steppe or tundra vegetation and conditions too dry and cold to support forests at low altitudes. Aridity is also inferred from the low level of the lake between 21,000 and 8500 yr B.P., and especially after about 13,500 yr B.P. About 10,000 yr B.P. Chenopodiineae and other temperate taxa spread locally, providing palynological evidence for a shift from cold, dry to warm, dry conditions. Pine woodland developed at the site with the onset of humid conditions at 8500 yr B.P.; further cooling is suggested at 4000 yr B.P., when Pseudotsuga and Abies were established locally.


Sign in / Sign up

Export Citation Format

Share Document