scholarly journals Hydrological variations in central China over the past millennium and their links to the tropical Pacific and North Atlantic oceans

2020 ◽  
Vol 16 (2) ◽  
pp. 475-485
Author(s):  
Fucai Duan ◽  
Zhenqiu Zhang ◽  
Yi Wang ◽  
Jianshun Chen ◽  
Zebo Liao ◽  
...  

Abstract. Variations of precipitation, also called the Meiyu rain, in the East Asian summer monsoon (EASM) domain during the last millennium could help enlighten the hydrological response to future global warming. Here we present a precisely dated and highly resolved stalagmite δ18O record from the Yongxing Cave, central China. Our new record, combined with a previously published one from the same cave, indicates that the Meiyu rain has changed dramatically in association with the global temperature change. In particular, our record shows that the Meiyu rain was weakened during the Medieval Climate Anomaly (MCA) but intensified during the Little Ice Age (LIA). During the Current Warm Period (CWP), our record indicates a similar weakening of the Meiyu rain. Furthermore, during the MCA and CWP, our records show that the atmospheric precipitation is similarly wet in northern China and similarly dry in central China, but relatively wet during the CWP in southern China. This spatial discrepancy indicates a complicated localized response of the regional precipitation to the anthropogenic forcing. The weakened (intensified) Meiyu rain during the MCA (LIA) matches well with the warm (cold) phases of Northern Hemisphere surface air temperature. This Meiyu rain pattern also corresponds well to the climatic conditions over the tropical Indo-Pacific warm pool. On the other hand, our record shows a strong association with the North Atlantic climate as well. The reduced (increased) Meiyu rain correlates well with positive (negative) phases of the North Atlantic Oscillation. In addition, our record links well to the strong (weak) Atlantic meridional overturning circulation during the MCA (LIA) period. All abovementioned localized correspondences and remote teleconnections on decadal to centennial timescales indicate that the Meiyu rain was coupled closely with oceanic processes in the tropical Pacific and North Atlantic oceans during the MCA and LIA.

2016 ◽  
Author(s):  
Shouwen Zhang ◽  
Hua Jiang ◽  
Hui Wang ◽  
Ling Du ◽  
Dakui Wang

Abstract. Climate model results have shown that precipitation in the tropical Pacific Ocean will change up to 15 % and 25 % in one century. In this paper, both reanalysis data and climate model are used to study the response of global ocean and atmosphere to precipitation anomalies in the tropical Pacific Ocean. It shows that positive precipitation anomalies could trigger an El Nino-like SSTA response, with warmer SST in the east tropical Pacific Ocean and slightly cooler SST in the west tropical Pacific Ocean. The zonal tropical ocean currents change significantly, of which the magnitudes and directions are mainly relying on the intensity of the precipitation anomalies. Through a wave train encompassing the whole Northern Hemisphere named as the Circumglobal Waveguide Pattern (CWP), the North Atlantic atmospheric circulation responds to the freshwater anomalies in a NAO-like pattern. The anomalous atmospheric circulation transport sea ice to the North Atlantic Ocean. The sea ice melts in summer and freshen the upper ocean, which makes the ocean more stable. It thus constrains vertical heat transport and makes the upper water cooler, forming a significant positive feedback mechanism.


2019 ◽  
Author(s):  
Fucai Duan ◽  
Zhenqiu Zhang ◽  
Yi Wang ◽  
Jianshun Chen ◽  
Zebo Liao ◽  
...  

Abstract. Variations of East Asian summer monsoon (EASM) during the last millennium could help enlighten the monsoonal response to future global warming. Here we present a precisely dated and highly resolved stalagmite δ18O record from the Yongxing Cave, central China. Our new record, combined with a previously published one from the same cave, indicates that the EASM has changed dramatically in association with the global temperature rising. In particular, our record shows that the EASM has intensified during the Medieval Climate Anomaly (MCA) and the Current Warm Period (CWP) but weakened during the Little Ice Age (LIA). We find that the EASM intensity is similar during the MCA and CWP periods in both northern and central China, but relatively stronger during the CWP in southern China. This discrepancy indicates a complicated regional response of the EASM to the anthropogenic forcing. The intensified and weakened EASM during the MCA and LIA matches well with the warm and cold phases of Northern Hemisphere surface air temperature, respectively. This EASM pattern also corresponds well with the rainfall over the tropical Indo-Pacific warm pool. Surprisingly, our record shows a strong association with the North Atlantic climate as well. The intensified (weakened) EASM correlates well with positive (negative) phases of North Atlantic Oscillation. In addition, our record links well with the strong (weak) Atlantic meridional overturning circulation during the MCA (LIA) period. All above-mentioned correlations indicate that the EASM tightly couples with oceanic processes in the tropical Pacific and North Atlantic oceans during the MCA and LIA.


2020 ◽  
Vol 33 (9) ◽  
pp. 3565-3583 ◽  
Author(s):  
Haijun Yang ◽  
Xingchen Shen ◽  
Jie Yao ◽  
Qin Wen

AbstractAs the most extensive highland in the world, the Tibetan Plateau (TP) plays an important role in shaping the global climate. Quantifying the effect of the TP on global climate is the first step for a full understanding of the TP’s standing on planet Earth. Through coupled model sensitivity experiments, we draw a panorama of the TP’s global impact in this paper. Our model results show that the absence of the TP would result in a 4°C colder and 10% drier climate in the Northern Hemisphere (NH). The TP has a striking remote effect on the North Atlantic. Removing the TP would enhance the westerlies in the mid- to high latitudes of the NH and weaken the easterlies over the tropical Pacific. More moisture would be relocated from the tropical Pacific to the North Atlantic, shutting down the Atlantic thermohaline circulation, which would eventually result in more than 15°C colder and 20% drier climate over the North Atlantic. Our model results suggest that the presence of the TP may have contributed greatly to the hospitable modern climate in the NH, by promoting the establishment of the thermohaline circulation in the Atlantic, and therefore enhancing the northward ocean heat transport and atmosphere moisture transport across the equator.


2005 ◽  
Vol 18 (13) ◽  
pp. 2361-2375 ◽  
Author(s):  
Juliette Mignot ◽  
Claude Frankignoul

Abstract The link between the interannual to interdecadal variability of the Atlantic meridional overturning circulation (AMOC) and the atmospheric forcing is investigated using 200 yr of a control simulation of the Bergen Climate Model, where the mean circulation cell is rather realistic, as is also the location of deep convection in the northern North Atlantic. The AMOC variability has a slightly red frequency spectrum and is primarily forced by the atmosphere. The maximum value of the AMOC is mostly sensitive to the deep convection in the Irminger Sea, which it lags by about 5 yr. The latter is mostly forced by a succession of atmospheric patterns that induce anomalous northerly winds over the area. The impact of the North Atlantic Oscillation on deep convection in the Labrador and Greenland Seas is represented realistically, but its influence on the AMOC is limited to the interannual time scale and is primarily associated with wind forcing. The tropical Pacific shows a strong variability in the model, with too strong an influence on the North Atlantic. However, its influence on the tropical Atlantic is realistic. Based on lagged correlations and the release of fictitious Lagrangian drifters, the tropical Pacific seems to influence the AMOC with a time lag of about 40 yr. The mechanism is as follows: El Niño events induce positive sea surface salinity anomalies in the tropical Atlantic that are advected northward, circulate in the subtropical gyre, and then subduct. In the ocean interior, part of the salinity anomaly is advected along the North Atlantic current, eventually reaching the Irminger and Labrador Seas after about 35 yr where they destabilize the water column and favor deep convection.


2013 ◽  
Vol 28 (6) ◽  
pp. 1304-1321 ◽  
Author(s):  
Seung-Eon Lee ◽  
Kyong-Hwan Seo

Abstract Forecasting year-to-year variations in East Asian summer monsoon (EASM) precipitation is one of the most challenging tasks in climate prediction because the predictors are not sufficiently well known and the forecast skill of the numerical models is poor. In this paper, a statistical forecast model for changma (the Korean portion of the EASM system) precipitation is proposed that was constructed with three physically based predictors. A forward-stepwise regression was used to select the predictors that included sea surface temperature (SST) anomalies over the North Pacific, the North Atlantic, and the tropical Pacific Ocean. Seasonal predictions with this model showed high forecasting capabilities that had a Gerrity skill score of ~0.82. The dynamical processes associated with the predictors were examined prior to their use in the prediction scheme. All predictors tended to induce an anticyclonic anomaly to the east or southeast of Japan, which was responsible for transporting a large amount of moisture to the southern Korean Peninsula. The predictor in the North Pacific formed an SST front to the east of Japan during the summertime, which maintained a lower-tropospheric baroclinicity. The North Atlantic SST anomaly induced downstream wave propagation in the upper troposphere, developing anticyclonic activity east of Japan. Forcing from the tropical Pacific SST anomaly triggered a cyclonic anomaly over the South China Sea, which was maintained by atmosphere–ocean interactions and induced an anticyclonic anomaly via northward Rossby wave propagation. Overall, the model used for forecasting changma precipitation performed well (R = 0.85) and correctly predicted information for 16 out of 19 yr of observational data.


2013 ◽  
Vol 26 (23) ◽  
pp. 9528-9544 ◽  
Author(s):  
Yizhak Feliks ◽  
Andreas Groth ◽  
Andrew W. Robertson ◽  
Michael Ghil

This paper explores the three-way interactions between the Indian monsoon, the North Atlantic, and the tropical Pacific. Four climate records were analyzed: the monsoon rainfall in two Indian regions, the Southern Oscillation index for the tropical Pacific, and the NAO index for the North Atlantic. The individual records exhibit highly significant oscillatory modes with spectral peaks at 7–8 yr and in the quasi-biennial and quasi-quadrennial bands. The interactions between the three regions were investigated in the light of the synchronization theory of chaotic oscillators. The theory was applied here by combining multichannel singular-spectrum analysis (M-SSA) with a recently introduced varimax rotation of the M-SSA eigenvectors. A key result is that the 7–8-yr and 2.7-yr oscillatory modes in all three regions are synchronized, at least in part. The energy-ratio analysis, as well as time-lag results, suggests that the NAO plays a leading role in the 7–8-yr mode. It was found therewith that the South Asian monsoon is not slaved to forcing from the equatorial Pacific, although it does interact strongly with it. The time-lag analysis pinpointed this to be the case in particular for the quasi-biennial oscillatory modes. Overall, these results confirm that the approach of synchronized oscillators, combined with varimax-rotated M-SSA, is a powerful tool in studying teleconnections between regional climate modes and that it helps identify the mechanisms that operate in various frequency bands. This approach should be readily applicable to ocean modes of variability and to the problems of air–sea interaction as well.


2018 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the North Pacific and the Tropical Pacific region, NINO3.4, have been explored using data from three reanalyses datasets, namely the ORA-20C, the ORAS4 and the ERA-20C. The approach is based on the Convergent Cross Mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between observables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the Tropical Pacific (NINO3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer time scales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different important regions of the globe. In particular they call for a deep reassessment of the way teleconnections are interpreted, and for a more rigorous way to evaluate causality and dependences between the different components of the climate system.


2016 ◽  
Author(s):  
Montserrat Alonso-Garcia ◽  
Helga F. Kleiven ◽  
Jerry F. McManus ◽  
Paola Moffa-Sanchez ◽  
Wallace Broecker ◽  
...  

Abstract. Arctic freshwater discharges to the Labrador Sea from melting glaciers and sea-ice can have a deep impact on ocean circulation dynamics in the North Atlantic modifying climate and deep water formation in this region. In this study, we present for the first time a high resolution record of ice-rafting in the Labrador Sea over the last millennium to assess the effects of freshwater discharges in this region on ocean circulation and climate. The occurrence of ice-rafted debris (IRD) in the Labrador Sea was studied using sediments from Site GS06-144-03 (57.29° N, 48.37° W, 3432 m water depth). IRD from the fraction 63–150 µm show higher concentration during the intervals: ~ 1000–1100, ~ 1150–1250, ~ 1400–1450, ~ 1650–1700 and ~ 1750–1800 yr AD. The first two intervals occurred during the Medieval Climate Anomaly (MCA), whereas the others took place within the Little Ice Age (LIA). Mineralogical identification indicates that the main IRD source during the MCA was SE Greenland. In contrast, the concentration and relative abundance of hematite-stained grains (HSG) reflects an increase in the contribution of Arctic ice during the LIA. The comparison of our Labrador Sea IRD records with other climate proxies from the subpolar North Atlantic allowed us to propose a sequence of processes that led to the cooling events during the LIA, particularly in the Northern Hemisphere. This study reveals that the warm climate of the MCA may have enhanced iceberg calving along the SE Greenland coast and, as a result, freshened the subpolar gyre (SPG). Consequently, SPG circulation switched to a weaker mode through internal feedbacks that reduced convection in the Labrador Sea decreasing its contribution to the Atlantic Meridional overturning circulation and, thus, the amount of heat transported to high latitudes. This mechanism very likely preconditioned the North Atlantic inducing a state in which external forcings (e.g. solar irradiance and volcanic input) could easily drive periods of severe cold conditions in Europe and the North Atlantic like the LIA. The outcomes of this work indicate that a freshening of the SPG may play a crucial role in the development of cold events during the Holocene, which may be of key importance for predictions about future climate.


2011 ◽  
Vol 24 (15) ◽  
pp. 3971-3988 ◽  
Author(s):  
Liping Zhang ◽  
Lixin Wu ◽  
Jiaxu Zhang

Abstract Recent observation has shown that the dominant mode of the net freshwater flux variations over the North Atlantic Ocean is the significant trend of freshwater loss over the Gulf Stream region and its extension. In this paper, the coupled ocean–atmosphere response to this freshwater flux change is investigated based on a series of the Fast Ocean–Atmosphere Model coupled-model experiments. The model demonstrates that the freshwater loss over the Gulf Stream and its extension region directly forces an anomalous cyclonic gyre and triggers a SST dipole with cooling in the western subtropical and warming in the eastern subpolar North Atlantic. The freshwater loss also forces a significant response in the atmosphere with a negative NAO-like response in early winter and a basin-scale ridge resembling the eastern Atlantic mode (EAM) in late winter. The salinification also strengthens the Atlantic meridional overturning circulation and thus the poleward heat transport, leading to tropical cooling. The freshwater loss over the Gulf Stream and its extension also leads to an El Niño–like warming in the tropical Pacific and cooling in the North Pacific, similar to the responses in previous water-hosing experiments with an input of freshwater in the subpolar North Atlantic. The tropical Pacific responses subsequently strengthen the Northern Hemispheric atmospheric anomalies in early winter, but reverse them in late winter through an emanation of Rossby wave trains. Overall, the tropical Pacific air–sea coupling plays a damping role, while local air–sea coupling tends to enhance the ocean and atmospheric responses over the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document