scholarly journals Supplementary material to "Influence of North Pacific Decadal Variability on the Western Canadian Arctic over the past 700 years"

Author(s):  
François Lapointe ◽  
Pierre Francus ◽  
Scott F. Lamoureux ◽  
Mathias Vuille ◽  
Jean-Philippe Jenny ◽  
...  
2017 ◽  
Vol 13 (4) ◽  
pp. 411-420 ◽  
Author(s):  
François Lapointe ◽  
Pierre Francus ◽  
Scott F. Lamoureux ◽  
Mathias Vuille ◽  
Jean-Philippe Jenny ◽  
...  

Abstract. Understanding how internal climate variability influences arctic regions is required to better forecast future global climate variations. This paper investigates an annually-laminated (varved) record from the western Canadian Arctic and finds that the varves are negatively correlated with both the instrumental Pacific Decadal Oscillation (PDO) during the past century and also with reconstructed PDO over the past 700 years, suggesting drier Arctic conditions during high-PDO phases, and vice versa. These results are in agreement with known regional teleconnections, whereby the PDO is negatively and positively correlated with summer precipitation and mean sea level pressure respectively. This pattern is also evident during the positive phase of the North Pacific Index (NPI) in autumn. Reduced sea-ice cover during summer–autumn is observed in the region during PDO− (NPI+) and is associated with low-level southerly winds that originate from the northernmost Pacific across the Bering Strait and can reach as far as the western Canadian Arctic. These climate anomalies are associated with the PDO− (NPI+) phase and are key factors in enhancing evaporation and subsequent precipitation in this region of the Arctic. Collectively, the sedimentary evidence suggests that North Pacific climate variability has been a persistent regulator of the regional climate in the western Canadian Arctic. Since projected sea-ice loss will contribute to enhanced future warming in the Arctic, future negative phases of the PDO (or NPI+) will likely act to amplify this positive feedback.


2021 ◽  
Author(s):  
A. J. Dittus ◽  
E. Hawkins ◽  
J. I. Robson ◽  
D. M. Smith ◽  
L. J. Wilcox

2002 ◽  
Vol 15 (6) ◽  
pp. 586-605 ◽  
Author(s):  
Niklas Schneider ◽  
Arthur J. Miller ◽  
David W. Pierce

2016 ◽  
Vol 47 (12) ◽  
pp. 3783-3801 ◽  
Author(s):  
Laura E. Fleming ◽  
Kevin J. Anchukaitis

2018 ◽  
Vol 22 (12) ◽  
pp. 6399-6414 ◽  
Author(s):  
Lanying Zhang ◽  
George Kuczera ◽  
Anthony S. Kiem ◽  
Garry Willgoose

Abstract. The duration of dry or wet hydrological epochs (run lengths) associated with positive or negative Inter-decadal Pacific Oscillation (IPO) or Pacific Decadal Oscillation (PDO) phases, termed Pacific decadal variability (PDV), is an essential statistical property for understanding, assessing and managing hydroclimatic risk. Numerous IPO and PDO paleoclimate reconstructions provide a valuable opportunity to study the statistical signatures of PDV, including run lengths. However, disparities exist between these reconstructions, making it problematic to determine which reconstruction(s) to use to investigate pre-instrumental PDV and run length. Variability and persistence on centennial scales are also present in some millennium-long reconstructions, making consistent run length extraction difficult. Thus, a robust method to extract meaningful and consistent run lengths from multiple reconstructions is required. In this study, a dynamic threshold framework to account for centennial trends in PDV reconstructions is proposed. The dynamic threshold framework is shown to extract meaningful run length information from multiple reconstructions. Two hydrologically important aspects of the statistical signatures associated with the PDV are explored: (i) whether persistence (i.e. run lengths) during positive epochs is different to persistence during negative epochs and (ii) whether the reconstructed run lengths have been stationary during the past millennium. Results suggest that there is no significant difference between run lengths in positive and negative phases of PDV and that it is more likely than not that the PDV run length has been non-stationary in the past millennium. This raises concerns about whether variability seen in the instrumental record (the last ∼100 years), or even in the shorter 300–400-year paleoclimate reconstructions, is representative of the full range of variability.


2003 ◽  
Vol 16 (8) ◽  
pp. 1101-1120 ◽  
Author(s):  
L. Wu ◽  
Z. Liu ◽  
R. Gallimore ◽  
R. Jacob ◽  
D. Lee ◽  
...  

2018 ◽  
Author(s):  
Lanying Zhang ◽  
George Kuczera ◽  
Anthony S. Kiem ◽  
Garry Willgoose

Abstract. The duration of dry or wet hydrological epochs (run lengths) associated with positive or negative Inter-decadal Pacific Oscillation (IPO) or Pacific Decadal Oscillation (PDO) phases, termed Pacific Decadal Variability (PDV), is an essential statistical property for understanding, assessing and managing hydroclimatic risk. Numerous IPO and PDO paleoclimate reconstructions provide a valuable opportunity to study the statistical signatures of PDV, including run lengths. However, disparities exist between these reconstructions making it problematic to determine which reconstruction(s) to use to investigate pre-instrumental PDV and run length. Variability and persistence on centennial scales are also present in some millennium long reconstructions, making consistent run length extraction difficult. Thus, a robust method to extract meaningful and consistent run lengths from multiple reconstructions is required. In this study, a dynamic threshold framework to account for centennial trends in PDV reconstructions is proposed. The dynamic threshold framework is shown to extract meaningful run length information from multiple reconstructions. Two hydrologically important aspects of the statistical signatures associated with the PDV are explored: (i) whether persistence (i.e. run lengths) during positive epochs is different to persistence during negative epochs and (ii) whether the reconstructed run lengths are stationary during the past millennium. Results suggest that there is no significant difference between run lengths in positive and negative phases of PDV and that it is more likely than not that the PDV run length has been non-stationary in the past millennium. This raises concerns about whether variability seen in the instrumental record (the last ~ 100 years), or even in the shorter 300–400 year paleoclimate reconstructions, is representative of the full range of variability.


2009 ◽  
Vol 22 (20) ◽  
pp. 5277-5297 ◽  
Author(s):  
Marc d’Orgeville ◽  
W. Richard Peltier

Abstract In the low-resolution version of the Community Climate System Model, version 3 (CCSM3), the modeled North Pacific decadal variability is demonstrated to be independent of the epoch for which a statistically steady control simulation is constructed, either preindustrial or modern; however, it is demonstrated to be significantly affected by the different global warming scenarios investigated. In the control simulations, the North Pacific basin is shown to be dominated by sea surface temperature (SST) variability with a time scale of approximately 20 yr. This mode of variability is in close accord with the observed characteristics of the Pacific decadal oscillation (PDO). A detailed analysis of the statistical equilibrium runs is performed based on other model variables as well [sea surface salinity (SSS), barotropic circulation, freshwater and heat fluxes, wind stress curl, sea ice, and snow coverage]. These analyses confirm that the underlying mechanism of the PDO involves a basin-scale mode of ocean adjustment to changes of the atmospheric forcing associated with the Aleutian low pressure system. However, they also suggest that the observed sign reversal of the PDO arises from a feedback in the northern part of the basin. In this novel hypothesis, the advection to the Bering Sea of “spice” anomalies formed in the central and western Pacific sets up a typical 10-yr time scale for the triggering of the PDO reversal. In all of the global warming simulations described in this paper, the signal represented by the detrended SST variability in the North Pacific displays significant power at multidecadal frequencies. In these simulations, the natural North Pacific decadal variability, as characterized in the control simulations (the PDO), remains the leading mode of variability only for moderate forcing. If the warming is too strong, then the typical 20-yr time scale of the canonical PDO can no longer be detected, except in terms of SSS variability and only prior to a significant change that occurs in the Bering Strait Throughflow.


Sign in / Sign up

Export Citation Format

Share Document