scholarly journals Life and death in the Chicxulub impact crater: A record of the Paleocene-Eocene Thermal Maximum

Author(s):  
Vann Smith ◽  
Sophie Warny ◽  
Kliti Grice ◽  
Bettina Schaefer ◽  
Michael T. Whalen ◽  
...  

Abstract. Thermal stress on the biosphere during the extreme warmth of the Paleocene-Eocene Thermal Maximum (PETM) was most severe at low latitudes, with sea surface temperatures at some localities exceeding the 35 °C at which marine organisms experience heat stress. Relatively few equivalent terrestrial sections have been identified, and the response of land plants to this extreme heat is still poorly understood. Here, we present a new PETM record from the peak ring of the Chicxulub impact crater that has been identified based on nannofossil biostratigraphy, an acme of the dinoflagellate genus Apectodinium, and a negative carbon isotope excursion. Geochemical and microfossil proxies show that the PETM is marked by elevated TEX86H-based sea surface temperatures (SSTs) averaging ~37.8 °C, an increase in terrestrial input, surface productivity, salinity stratification, and bottom water anoxia, with biomarkers for green and purple sulfur bacteria indicative of photic zone euxinia in the early part of the event. Pollen and plants spores in this core provide the first PETM floral assemblage described from México, Central America, and the northern Caribbean. The source area was a diverse coastal shrubby tropical forest, with a remarkably high abundance of fungal spores indicating humid conditions. Thus, while seafloor anoxia devastated the benthic marine biota, and dinoflagellate assemblages were heat-stressed, the terrestrial plant ecosystem thrived.

2020 ◽  
Vol 16 (5) ◽  
pp. 1889-1899
Author(s):  
Vann Smith ◽  
Sophie Warny ◽  
Kliti Grice ◽  
Bettina Schaefer ◽  
Michael T. Whalen ◽  
...  

Abstract. Thermal stress on the biosphere during the extreme warmth of the Paleocene–Eocene Thermal Maximum (PETM) was most severe at low latitudes, with sea surface temperatures at some localities exceeding the 35 ∘C at which marine organisms experience heat stress. Relatively few equivalent terrestrial sections have been identified, and the response of land plants to this extreme heat is still poorly understood. Here, we present a new record of the PETM from the peak ring of the Chicxulub impact crater that has been identified based on nannofossil biostratigraphy, an acme of the dinoflagellate genus Apectodinium, and a negative carbon isotope excursion. Geochemical and microfossil proxies show that the PETM is marked by elevated TEX86H-based sea surface temperatures (SSTs) averaging ∼37.8 ∘C, an increase in terrestrial input and surface productivity, salinity stratification, and bottom water anoxia, with biomarkers for green and purple sulfur bacteria indicative of photic zone euxinia in the early part of the event. Pollen and plants spores in this core provide the first PETM floral assemblage described from Mexico, Central America, and the northern Caribbean. The source area was a diverse coastal shrubby tropical forest with a remarkably high abundance of fungal spores, indicating humid conditions. Thus, while seafloor anoxia devastated the benthic marine biota and dinoflagellate assemblages were heat-stressed, the terrestrial plant ecosystem thrived.


2020 ◽  
Author(s):  
Vann Smith ◽  
Sophie Warny ◽  
Kliti Grice ◽  
Bettina Schaefer ◽  
Michael T. Whalen ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 2381-2400 ◽  
Author(s):  
Appy Sluijs ◽  
Joost Frieling ◽  
Gordon N. Inglis ◽  
Klaas G. J. Nierop ◽  
Francien Peterse ◽  
...  

Abstract. A series of papers published shortly after the Integrated Ocean Drilling Program Arctic Coring Expedition (ACEX, 2004) on Lomonosov Ridge indicated remarkably high early Eocene sea surface temperatures (SSTs; ca. 23 to 27 ∘C) and land air temperatures (ca. 17 to 25 ∘C) based on the distribution of isoprenoid and branched glycerol dialkyl glycerol tetraether (isoGDGT and brGDGT) lipids, respectively. Here, we revisit these results using recent analytical developments – which have led to improved temperature calibrations and the discovery of new temperature-sensitive glycerol monoalkyl glycerol tetraethers (GMGTs) – and currently available proxy constraints. The isoGDGT assemblages support temperature as the dominant variable controlling TEX86 values for most samples. However, contributions of isoGDGTs from land, which we characterize in detail, complicate TEX86 paleothermometry in the late Paleocene and part of the interval between the Paleocene–Eocene Thermal Maximum (PETM; ∼ 56 Ma) and the Eocene Thermal Maximum 2 (ETM2; ∼ 54 Ma). Background early Eocene SSTs generally exceeded 20 ∘C, with peak warmth during the PETM (∼ 26 ∘C) and ETM2 (∼ 27 ∘C). We find abundant branched GMGTs, likely dominantly marine in origin, and their distribution responds to environmental change. Further modern work is required to test to what extent temperature and other environmental factors determine their distribution. Published Arctic vegetation reconstructions indicate coldest-month mean continental air temperatures of 6–13 ∘C, which reinforces the question of whether TEX86-derived SSTs in the Paleogene Arctic are skewed towards the summer season. The exact meaning of TEX86 in the Paleogene Arctic thus remains a fundamental issue, and it is one that limits our assessment of the performance of fully coupled climate models under greenhouse conditions.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1870
Author(s):  
Matteo Gentilucci ◽  
Abdelraouf A. Moustafa ◽  
Fagr Kh. Abdel-Gawad ◽  
Samira R. Mansour ◽  
Maria Rosaria Coppola ◽  
...  

This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Niels J. de Winter ◽  
Inigo A. Müller ◽  
Ilja J. Kocken ◽  
Nicolas Thibault ◽  
Clemens V. Ullmann ◽  
...  

AbstractSeasonal variability in sea surface temperatures plays a fundamental role in climate dynamics and species distribution. Seasonal bias can also severely compromise the accuracy of mean annual temperature reconstructions. It is therefore essential to better understand seasonal variability in climates of the past. Many reconstructions of climate in deep time neglect this issue and rely on controversial assumptions, such as estimates of sea water oxygen isotope composition. Here we present absolute seasonal temperature reconstructions based on clumped isotope measurements in bivalve shells which, critically, do not rely on these assumptions. We reconstruct highly precise monthly sea surface temperatures at around 50 °N latitude from individual oyster and rudist shells of the Campanian greenhouse period about 78 million years ago, when the seasonal range at 50 °N comprised 15 to 27 °C. In agreement with fully coupled climate model simulations, we find that greenhouse climates outside the tropics were warmer and more seasonal than previously thought. We conclude that seasonal bias and assumptions about seawater composition can distort temperature reconstructions and our understanding of past greenhouse climates.


2018 ◽  
Vol 14 (6) ◽  
pp. 901-922 ◽  
Author(s):  
Mari F. Jensen ◽  
Aleksi Nummelin ◽  
Søren B. Nielsen ◽  
Henrik Sadatzki ◽  
Evangeline Sessford ◽  
...  

Abstract. Here, we establish a spatiotemporal evolution of the sea-surface temperatures in the North Atlantic over Dansgaard–Oeschger (DO) events 5–8 (approximately 30–40 kyr) using the proxy surrogate reconstruction method. Proxy data suggest a large variability in North Atlantic sea-surface temperatures during the DO events of the last glacial period. However, proxy data availability is limited and cannot provide a full spatial picture of the oceanic changes. Therefore, we combine fully coupled, general circulation model simulations with planktic foraminifera based sea-surface temperature reconstructions to obtain a broader spatial picture of the ocean state during DO events 5–8. The resulting spatial sea-surface temperature patterns agree over a number of different general circulation models and simulations. We find that sea-surface temperature variability over the DO events is characterized by colder conditions in the subpolar North Atlantic during stadials than during interstadials, and the variability is linked to changes in the Atlantic Meridional Overturning circulation and in the sea-ice cover. Forced simulations are needed to capture the strength of the temperature variability and to reconstruct the variability in other climatic records not directly linked to the sea-surface temperature reconstructions. This is the first time the proxy surrogate reconstruction method has been applied to oceanic variability during MIS3. Our results remain robust, even when age uncertainties of proxy data, the number of available temperature reconstructions, and different climate models are considered. However, we also highlight shortcomings of the methodology that should be addressed in future implementations.


Sign in / Sign up

Export Citation Format

Share Document