scholarly journals An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu

2012 ◽  
Vol 8 (6) ◽  
pp. 1929-1940 ◽  
Author(s):  
C. T. Plummer ◽  
M. A. J. Curran ◽  
T D. van Ommen ◽  
S. O. Rasmussen ◽  
A. D. Moy ◽  
...  

Abstract. Volcanic eruptions are an important cause of natural climate variability. In order to improve the accuracy of climate models, precise dating and magnitude of the climatic effects of past volcanism are necessary. Here we present a 2000-yr record of Southern Hemisphere volcanism recorded in ice cores from the high accumulation Law Dome site, East Antarctica. The ice cores were analysed for a suite of chemistry signals and are independently dated via annual layer counting, with 11 ambiguous years at 23 BCE, which has presently the lowest error of all published long Antarctic ice cores. Independently dated records are important to avoid circular dating where volcanic signatures are assigned a date from some external information rather than using the date it is found in the ice core. Forty-five volcanic events have been identified using the sulphate chemistry of the Law Dome record. The low dating error and comparison with the NGRIP (North Greenland Ice Core Project) volcanic records (on the GICC05 timescale) suggest Law Dome is the most accurately dated Antarctic volcanic dataset, which will improve the dating of individual volcanic events and potentially allow better correlation between ice core records, leading to improvements in global volcanic forcing datasets. One of the most important volcanic events of the last two millennia is the large 1450s CE event, usually assigned to the eruption of Kuwae, Vanuatu. In this study, we review the evidence surrounding the presently accepted date for this event, and make the case that two separate eruptions have caused confusion in the assignment of this event. Volcanic sulphate deposition estimates are important for modelling the climatic response to eruptions. The largest volcanic sulphate events in our record are dated at 1458 CE (Kuwae?, Vanuatu), 1257 and 422 CE (unidentified).

2012 ◽  
Vol 8 (3) ◽  
pp. 1567-1590 ◽  
Author(s):  
C. T. Plummer ◽  
M. A. J. Curran ◽  
T. D. van Ommen ◽  
S. O. Rasmussen ◽  
A. D. Moy ◽  
...  

Abstract. Volcanic eruptions are an important cause of natural climate variability. In order to improve the accuracy of climate models, precise dating and magnitude of the climatic effects of past volcanism are necessary. Here we present a 2000-yr record of Southern Hemisphere volcanism recorded in ice cores from the high accumulation Law Dome site, East Antarctica. The ice cores were analyzed for a suite of chemistry signals and are independently dated via annual layer counting, with 11 ambiguous years by the end of the record. Independently dated records are important to avoid circular dating where volcanic signatures are assigned a date from some external information rather than using the date it is found in the ice core. Forty-five volcanic events have been identified using the sulfate chemistry of the Law Dome record. Comparisons between Law Dome and NGRIP (Greenland) volcanic records suggest Law Dome is the most accurately dated Antarctic volcanic dataset and allows for the records to be synchronized with NGRIP, leading to an improved global volcanic forcing dataset. Volcanic sulfate deposition estimates are important for modeling the climatic response to eruptions. The largest volcanic sulfate events in our record are dated at 1458 CE (Kuwae, Vanuatu), 1257 and 423 CE (unidentified). Using our record we refine the dating of previously known volcanic events and present evidence for two separate eruptions during the period 1450–1460 CE, potentially causing confusion in the assignment of the Kuwae (Vanuatu) eruption to volcanic signatures during this time interval.


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


2004 ◽  
Vol 39 ◽  
pp. 545-556 ◽  
Author(s):  
Daniel Dixon ◽  
Paul A. Mayewski ◽  
Susan Kaspari ◽  
Sharon Sneed ◽  
Mike Handley

AbstractSixteen high-resolution ice-core records from West Antarctica and South Pole are used to examine the spatial and temporal distribution of sulfate for the last 200 years. The preservation of seasonal layers throughout the length of each record results in a dating accuracy of better than 1 year based on known global-scale volcanic events. A dual transport source for West Antarctic sea-salt (ss) SO42– and excess (xs) SO42– is observed: lower-tropospheric for areas below 1000m elevation and mid-/upper-tropospheric/stratospheric for areas located above 1000 m. Our xsSO42– records with volcanic peaks removed do not display any evidence of an anthropogenic impact on West Antarctic SO42– concentrations but do reveal that a major climate transition takes place over West Antarctica at ∼1940. Global-scale volcanic eruptions appear as significant peaks in the robust-spline residual xsSO42– records from sites located above 1000m elevation but do not appear in the residual records from sites located below 1000 m.


2002 ◽  
Vol 14 (1) ◽  
pp. 55-60 ◽  
Author(s):  
M.J. Zhang ◽  
Z.Q. Li ◽  
C.D. Xiao ◽  
D.H. Qin ◽  
H.A. Yang ◽  
...  

A 51.85 m ice core collected from site LGB65 (accumulation rate 127 kg m−2 a−1, mean annual temperature −33.1°C) in Princess Elizabeth Land, East Antarctica, during the 1996–97 Chinese First Antarctic Inland Expedition has been analysed for chemical composition and oxygen isotope ratio. Based on the high definition of seasonal variations of major ions, the ice core was dated with errors within ± 3 years. The continuous sulphate analysis of the ice core provides an annually resolved proxy history of southern hemisphere volcanism in the past 250 years. High nssSO42−, concentrations seem to be well correlated to some explosive volcanic eruptions, such as Tambora (AD 1815), Coseguina (AD 1835), Krakatoa (AD 1883) and Tarawera (AD 1886). In comparison with other volcanic records, it seems that nssSO42− concentration data provide a better proxy for detecting volcanic activity than nssSO42− fluxes in low and intermediate accumulation regions, however, in high accumulation regions, small and moderate events may be more identifiable using of nssSO42− flux data.


2015 ◽  
Vol 11 (9) ◽  
pp. 1127-1137 ◽  
Author(s):  
A. Svensson ◽  
S. Fujita ◽  
M. Bigler ◽  
M. Braun ◽  
R. Dallmayr ◽  
...  

Abstract. Whereas ice cores from high-accumulation sites in coastal Antarctica clearly demonstrate annual layering, it is debated whether a seasonal signal is also preserved in ice cores from lower-accumulation sites further inland and particularly on the East Antarctic Plateau. In this study, we examine 5 m of early Holocene ice from the Dome Fuji (DF) ice core at a high temporal resolution by continuous flow analysis. The ice was continuously analysed for concentrations of dust, sodium, ammonium, liquid conductivity, and water isotopic composition. Furthermore, a dielectric profiling was performed on the solid ice. In most of the analysed ice, the multi-parameter impurity data set appears to resolve the seasonal variability although the identification of annual layers is not always unambiguous. The study thus provides information on the snow accumulation process in central East Antarctica. A layer counting based on the same principles as those previously applied to the NGRIP (North Greenland Ice core Project) and the Antarctic EPICA (European Project for Ice Coring in Antarctica) Dronning Maud Land (EDML) ice cores leads to a mean annual layer thickness for the DF ice of 3.0 ± 0.3 cm that compares well to existing estimates. The measured DF section is linked to the EDML ice core through a characteristic pattern of three significant acidity peaks that are present in both cores. The corresponding section of the EDML ice core has recently been dated by annual layer counting and the number of years identified independently in the two cores agree within error estimates. We therefore conclude that, to first order, the annual signal is preserved in this section of the DF core. This case study demonstrates the feasibility of determining annually deposited strata on the central East Antarctic Plateau. It also opens the possibility of resolving annual layers in the Eemian section of Antarctic ice cores where the accumulation is estimated to have been greater than in the Holocene.


2016 ◽  
Vol 12 (1) ◽  
pp. 103-113 ◽  
Author(s):  
E. Gautier ◽  
J. Savarino ◽  
J. Erbland ◽  
A. Lanciki ◽  
P. Possenti

Abstract. Current volcanic reconstructions based on ice core analysis have significantly improved over the past few decades by incorporating multiple-core analyses with a high temporal resolution from different parts of the polar regions into a composite common volcanic eruption record. Regional patterns of volcanic deposition are based on composite records, built from cores taken at both poles. However, in many cases only a single record at a given site is used for these reconstructions. This assumes that transport and regional meteorological patterns are the only source of the dispersion of the volcanic products. Here we evaluate the local-scale variability of a sulfate profile in a low-accumulation site (Dome C, Antarctica), in order to assess the representativeness of one core for such a reconstruction. We evaluate the variability with depth, statistical occurrence, and sulfate flux deposition variability of volcanic eruptions detected in five ice cores, drilled 1 m apart from each other. Local-scale variability, essentially attributed to snow drift and surface roughness at Dome C, can lead to a non-exhaustive record of volcanic events when a single core is used as the site reference, with a bulk probability of 30 % of missing volcanic events and close to 65 % uncertainty on one volcanic flux measurement (based on the standard deviation obtained from a five-core comparison). Averaging n records reduces the uncertainty of the deposited flux mean significantly (by a factor 1∕ √ n); in the case of five cores, the uncertainty of the mean flux can therefore be reduced to 29 %.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Raffaello Nardin ◽  
Alessandra Amore ◽  
Silvia Becagli ◽  
Laura Caiazzo ◽  
Massimo Frezzotti ◽  
...  

Major explosive volcanic eruptions may significantly alter the global atmosphere for about 2–3 years. During that period, volcanic products (mainly H2SO4) with high residence time, stored in the stratosphere or, for shorter times, in the troposphere are gradually deposited onto polar ice caps. Antarctic snow may thus record acidic signals providing a history of past volcanic events. The high resolution sulphate concentration profile along a 197 m long ice core drilled at GV7 (Northern Victoria land) was obtained by Ion Chromatography on around 3500 discrete samples. The relatively high accumulation rate (241 ± 13 mm we yr −1) and the 5-cm sampling resolution allowed a preliminary counted age scale. The obtained stratigraphy covers roughly the last millennium and 24 major volcanic eruptions were identified, dated, and tentatively ascribed to a source volcano. The deposition flux of volcanic sulphate was calculated for each signature and the results were compared with data from other Antarctic ice cores at regional and continental scale. Our results show that the regional variability is of the same order of magnitude as the continental one.


2020 ◽  
Author(s):  
Rita Traversi ◽  
Silvia Becagli ◽  
Mirko Severi ◽  
Raffaello Nardin ◽  
Laura Caiazzo ◽  
...  

<p>Explosive volcanic eruptions are able to affect significantly the atmosphere for 2‐3 years. During this time, volcanic products (mainly H2SO4) with high residence 
time are stored in the stratosphere/troposphere, and eventually deposited onto polar ice caps; snow layers may thus record signals providing a history of past 
volcanic events. A high resolution sulphate concentration profile along a 197 m long ice core drilled at GV7 (Northern Victoria Land) was obtained by Ion Chromatography. The relatively high accumulation rate (241±13 mm we yr<sup>-1</sup>) and the 5‐cm resolution allowed a preliminary counted age scale. The obtained stratigraphy covers roughly the last millennium and 24 major volcanic eruptions were identified, dated and 
ascribed to a source volcano. The deposition flux of volcanic sulfate was calculated and the results were compared with data from other Antarctic ice cores at regional and continental scale. Our results show that the regional variability is of the same order of magnitude 
of the continental scale.</p>


2020 ◽  
Author(s):  
Hugues Goosse ◽  
Quentin Dalaiden ◽  
Marie G. P. Cavitte ◽  
Liping Zhang

Abstract. Large open-ocean polynyas, defined as ice-free areas within the sea ice pack, have been observed only rarely over the past decades in the Southern Ocean. In addition to smaller recent events, an impressive sequence occurred in the Weddell Sea in 1974, 1975 and 1976 with openings of more than 300,000 km2 that lasted the full winter. Those big events have a huge impact on the sea ice cover, deep-water formation and more generally on the Southern Ocean and the Antarctic climate. However, we have no estimate of the frequency of the occurrence of such large open-ocean polynyas before the 1970s. Our goal here is to test if polynya activity could be reconstructed using continental records, and specifically, observations derived from ice cores. The fingerprint of big open-ocean polynyas is first described in reconstructions based on data from weather stations, in ice cores for the 1970s and in climate models. It shows a clear signal, characterized by a surface air warming and increased precipitation in coastal regions adjacent to the eastern part of the Weddell Sea where several high-resolution ice cores have been collected. The signal of isotopic composition of precipitation is more ambiguous and we thus base our reconstructions on surface mass balance records only. A first reconstruction is obtained by performing a simple average of standardized records. Given the similarity between the observed signal and the one simulated in models, we also use data assimilation to reconstruct past polynya activity. The impact of open ocean polynyas on the continent is not large enough compared to the changes due, for instance, to atmospheric variability to detect without ambiguity the polynya signal and additional observations would be required to discriminate clearly the years with and without open ocean polynya. It is thus reasonable to consider that, in these preliminary reconstructions, some high accumulation events may be wrongly interpreted as the consequence of polynya formation while some years with polynya formation may be missed. Nevertheless, our reconstructions suggest that big open ocean polynyas, such as the ones that were observed in the 1970s, are rare events, occurring at most a few times per century. Century-scale changes in polynya activity are also likely but our reconstructions are unable to assess precisely this aspect at this stage.


2014 ◽  
Vol 10 (4) ◽  
pp. 3537-3584 ◽  
Author(s):  
C. Buizert ◽  
K. M. Cuffey ◽  
J. P. Severinghaus ◽  
D. Baggenstos ◽  
T. J. Fudge ◽  
...  

Abstract. The West Antarctic Ice Sheet (WAIS)-Divide ice core (WAIS-D) is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ∼68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8–31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WAIS-D gas age-ice age difference (Δage) using a combination of firn densification modeling, ice flow modeling, and a dataset of δ15N-N2, a proxy for past firn column thickness. The largest Δage at WAIS-D occurs during the last glacial maximum, and is 525 ± 100 years. Internally consistent solutions can only be found when assuming little-to-no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WAIS-D chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu speleothem record. The small Δage at WAIS-D provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the bipolar "seesaw".


Sign in / Sign up

Export Citation Format

Share Document