scholarly journals Parallelisms between sea surface temperature changes in the western tropical Atlantic (Guiana basin) and high latitude climate signals over the last 140 000 years

2015 ◽  
Vol 11 (2) ◽  
pp. 1143-1175 ◽  
Author(s):  
O. Rama-Corredor ◽  
B. Martrat ◽  
J. O. Grimalt ◽  
G. E. López-Otalvaro ◽  
J. A. Flores ◽  
...  

Abstract. Sea surface temperatures (SST) in the Guiana basin over the last 140 ka were obtained by measuring the C37 alkenone unsaturation index U37'k in sediment core MD03-2616 (7° N, 53° W). The resulting dataset is unique for this period in the western tropical Atlantic region. SSTs range from 25.1 to 28.9 °C, i.e. glacial-to-interglacial amplitude of 3.8 °C, which is common in tropical areas. During the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a), the sediments studied trace rapid transmission of the climate variability from arctic-to-tropical latitudes and vice-versa. During these periods, MD03-2616 SSTs showed a remarkable parallelism with temperature changes observed in Greenland and SST records of North Atlantic cores. The last deglaciation in Guiana is particularly revealing. MIS2 stands out as the coldest period of the interval analysed, with SSTs reaching as low as 25.1 °C. It contains reminders of northern latitude events such as the Bølling-Allerød warming and the Younger Dryas cooling which ensued. These oscillations were previously documented in the δ18O of the Sajama tropical ice core and are present in Guiana with rates of ca. 6 °C ka−1 and changes of over 2 °C. During the glacial interval, significant abrupt variability is observed; e.g. oscillations of 0.5–1.2 °C during MIS3, i.e. about 30% of the maximum glacial–interglacial SST change. Nevertheless, in the MD03-2616 record it is hard to identify unambiguously either the Dansgaard–Oeschger type of oscillations described in northern latitudes or the SST drops associated with the Heinrich events characterising North Atlantic records. Although these specific events form the background of the climate variability observed, what truly shapes SSTs in Guiana is a long-term tropical response to precessional changes, which is modulated in the opposite way to polar variability. This lack of synchrony is consistent with other tropical records in locations to the north or south of Guiana and evidences an arctic-to-tropical decoupling when a substantial reduction in the Atlantic meridional overturning circulation (AMOC) takes place.

2015 ◽  
Vol 11 (10) ◽  
pp. 1297-1311 ◽  
Author(s):  
O. Rama-Corredor ◽  
B. Martrat ◽  
J. O. Grimalt ◽  
G. E. López-Otalvaro ◽  
J. A. Flores ◽  
...  

Abstract. Sea surface temperatures (SST) in the Guiana Basin over the last 140 ka were obtained by measuring the C37 alkenone unsaturation index Uk'37 in the sediment core MD03-2616 (7° N, 53° W). The resulting data set is unique in the western tropical Atlantic region for this period. The SSTs range from 25.1 to 28.9 °C, i.e. glacial–interglacial amplitude of 3.8 °C, which is in the range of change of other tropical areas. During the last two interglacial stages (marine isotope stages; MIS1 and MIS5e) and warm long interstadials (MIS5d-a), a rapid transmission of climate variability from Arctic–tropical latitudes is recorded. During these periods, the MD03-2616 SSTs show a conspicuous parallelism with temperature changes observed in Greenland and SST records of North Atlantic mid-latitude cores (Iberian Margin 38° N, Martrat et al., 2007). The last deglaciation in the Guiana Basin is particularly revealing. MIS2 stands out as the coldest period of the interval analysed. The events recorded in Guiana parallel northern latitude events such as the Bølling–Allerød warming and the Younger Dryas cooling which ensued. These oscillations were previously documented in the δ18O of the Sajama tropical ice core (Bolivia) and are present in Guiana, with rates of ca. 6 °C ka−1 and changes of over 2 °C. During the glacial interval, significant abrupt variability is observed, e.g. oscillations of 0.5–1.2 °C during MIS3, which is about 30 % of the maximum glacial–interglacial SST change. In the MD03-2616 record, it is possible to unambiguously identify either the Dansgaard–Oeschger oscillations described in northern latitudes or the SST drops associated with the Heinrich events characteristic of North Atlantic records. Although these events form the background of the climate variability observed, what truly shapes SSTs in the Guiana Basin is a long-term tropical response to precessional changes, which is modulated in the opposite way to Northern Hemisphere variability. This lack of synchrony is consistent with other tropical records in locations to the north or south of the Guiana Basin and evidences an Arctic–tropical decoupling when a substantial reduction in the Atlantic meridional overturning circulation (AMOC) takes place.


2015 ◽  
Vol 11 (2) ◽  
pp. 135-152 ◽  
Author(s):  
A. Schmittner ◽  
D. C. Lund

Abstract. The reason for the initial rise in atmospheric CO2 during the last deglaciation remains unknown. Most recent hypotheses invoke Southern Hemisphere processes such as shifts in midlatitude westerly winds. Coeval changes in the Atlantic meridional overturning circulation (AMOC) are poorly quantified, and their relation to the CO2 increase is not understood. Here we compare simulations from a global, coupled climate–biogeochemistry model that includes a detailed representation of stable carbon isotopes (δ13C) with a synthesis of high-resolution δ13C reconstructions from deep-sea sediments and ice core data. In response to a prolonged AMOC shutdown initialized from a preindustrial state, modeled δ13C of dissolved inorganic carbon (δ13CDIC) decreases in most of the surface ocean and the subsurface Atlantic, with largest amplitudes (more than 1.5‰) in the intermediate-depth North Atlantic. It increases in the intermediate and abyssal South Atlantic, as well as in the subsurface Southern, Indian, and Pacific oceans. The modeled pattern is similar and highly correlated with the available foraminiferal δ13C reconstructions spanning from the late Last Glacial Maximum (LGM, ~19.5–18.5 ka BP) to the late Heinrich stadial event 1 (HS1, ~16.5–15.5 ka BP), but the model overestimates δ13CDIC reductions in the North Atlantic. Possible reasons for the model–sediment-data differences are discussed. Changes in remineralized δ13CDIC dominate the total δ13CDIC variations in the model but preformed contributions are not negligible. Simulated changes in atmospheric CO2 and its isotopic composition (δ13CCO2) agree well with ice core data. Modeled effects of AMOC-induced wind changes on the carbon and isotope cycles are small, suggesting that Southern Hemisphere westerly wind effects may have been less important for the global carbon cycle response during HS1 than previously thought. Our results indicate that during the early deglaciation the AMOC decreased for several thousand years. We propose that the observed early deglacial rise in atmospheric CO2 and the decrease in δ13CCO2 may have been dominated by an AMOC-induced decline of the ocean's biologically sequestered carbon storage.


2020 ◽  
Author(s):  
Loïc Schmidely ◽  
Christoph Nehrbass-Ahles ◽  
Jochen Schmitt ◽  
Juhyeong Han ◽  
Lucas Silva ◽  
...  

Abstract. Deglaciations are characterized by the largest natural changes in methane (CH4) and nitrous oxide (N2O) concentrations of the past 800 thousand years. Reconstructions of millennial to centennial-scale variability within these periods are mostly restricted to the last deglaciation. In this study, we present composite records of CH4 and N2O concentrations from the EPICA Dome C ice core covering the penultimate deglaciation at temporal resolutions of about ~ 100 years. Our data permit the identification of centennial-scale fluctuations standing out of the overall transition to interglacial levels. These features occurred in concert with reinvigorations of the Atlantic Meridional Overturning Circulation (AMOC) and northward shifts of the Intertropical Convergence Zone. The abrupt CH4 and N2O rises at about ~ 134 and ~ 128 thousand of years before present (hereafter ka BP) are assimilated to the fluctuations accompanying the Dansgaard–Oeschger events of the last glacial period, while rising N2O levels at ~ 130.5 ka BP are assimilated to a pattern of increasing N2O concentrations that characterized the end of Heinrich stadials. We suggest the 130.5-ka event to be driven by a partial reinvigoration of the AMOC. Overall, the CH4 and N2O fluctuations during the penultimate deglaciation exhibit modes of variability that are also found during the last deglaciation. However, trace gas responses may differ for similar type of climatic events, as exemplified by the reduced amplitude and duration of the 134-ka event compared to the fluctuations of the Bølling–Allerød during the last deglaciation.


2012 ◽  
Vol 8 (1) ◽  
pp. 321-348 ◽  
Author(s):  
T. M. Lenton ◽  
V. N. Livina ◽  
V. Dakos ◽  
M. Scheffer

Abstract. The last deglaciation was characterised by two abrupt warming events, at the start of the Bølling-Allerød and at the end of the Younger Dryas, but their underlying causes are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state loses its stability and the climate tips into an alternative state, providing an early warning signal in the form of slowing responses to perturbations. However, the abrupt Dansgaard-Oeschger (DO) events during the last ice age were probably triggered by stochastic fluctuations without bifurcation or early warning, and whether the onset of the Bølling-Allerød (DO event 1) was preceded by slowing down or not is debated. Here we show that the interval from the Last Glacial Maximum to the end of the Younger Dryas, as recorded in three Greenland ice cores with two different climate proxies, was accompanied by a robust slowing down in climate dynamics and an increase in climate variability, consistent with approaching bifurcation. Prior to the Bølling warming there was a robust increase in climate variability but no consistent slowing down signal, suggesting this abrupt change was probably triggered by a stochastic fluctuation. The Bølling warming marked a distinct destabilisation of the climate system, which excited an internal mode of variability in Atlantic meridional overturning circulation strength, causing multi-centennial climate fluctuations. There is some evidence for slowing down in the transition to and during the Younger Dryas. We infer that a bifurcation point was finally approached at the end of the Younger Dryas, in which the cold climate state, with weak Atlantic overturning circulation, lost its stability, and the climate tipped irreversibly into a warm interglacial state. The lack of a large triggering perturbation at the end of the Younger Dryas, and the fact that subsequent meltwater perturbations did not cause sustained cooling, support the bifurcation hypothesis.


2021 ◽  
Author(s):  
Julia Weiffenbach ◽  
Michiel Baatsen ◽  
Anna von der Heydt

<p>The mid-Pliocene climate is the most recent geological period with a greenhouse gas concentration of approximately 400 ppmv, similar to the present day. Proxy reconstructions indicate enhanced warming in the high North Atlantic in the mid-Pliocene, which has been suggested to be a response to a stronger Atlantic Meridional Overturning Circulation (AMOC). PlioMIP2 ensemble results show a stronger AMOC and simulated North Atlantic sea surface temperatures (SSTs) match reconstructions better than PlioMIP1. A major difference between PlioMIP1 and PlioMIP2 is the closure of the Bering Strait and Canadian Archipelago in the Pliocene. Previous studies have shown that closure of these Arctic gateways leads to an enhanced AMOC due to altered freshwater fluxes in the Arctic.</p><p>Analysis of our Community Earth System Model (CESM1) simulations shows that the simulated increase in North Atlantic SSTs and strengthened AMOC in the Pliocene is a result of Pliocene boundary conditions rather than CO<sub>2</sub> concentration increase. Here we compare results from two runs with pre-industrial boundary conditions and 280 and 560 ppmv CO<sub>2</sub> concentrations and three runs with PlioMIP2 boundary conditions and 280, 400 and 560 ppmv CO<sub>2</sub> concentrations. Results show a 10-15% stronger AMOC in the Pliocene simulations as well as enhanced warming and saltening of the North Atlantic sea surface. While there is a stronger AMOC, the Atlantic northward ocean heat transport (OHT) in the Pliocene simulations only increases 0-3% with respect to the pre-industrial. Analysis indicates there is an altered relationship between the AMOC and OHT in the Pliocene, pointing to fundamentally different behavior of the AMOC in the Pliocene simulations. This is supported by a specific spatial pattern of deep water formation (DWF) areas in the Pliocene simulations that is significantly different from that of the pre-industrial. In the Pliocene simulations, DWF areas adjacent to south Greenland disappear and new DWF areas appear further southwards in the Labrador Sea off the coast of Newfounland. These results indicate that insight into the effect of the palaeogeographic boundary conditions is crucial to understanding the Pliocene climate and its potential as a geological equivalent to a future greenhouse climate.</p>


2020 ◽  
Vol 33 (6) ◽  
pp. 2427-2447 ◽  
Author(s):  
Nathaniel C. Johnson ◽  
Lakshmi Krishnamurthy ◽  
Andrew T. Wittenberg ◽  
Baoqiang Xiang ◽  
Gabriel A. Vecchi ◽  
...  

AbstractPositive precipitation biases over western North America have remained a pervasive problem in the current generation of coupled global climate models. These biases are substantially reduced, however, in a version of the Geophysical Fluid Dynamics Laboratory Forecast-Oriented Low Ocean Resolution (FLOR) coupled climate model with systematic sea surface temperature (SST) biases artificially corrected through flux adjustment. This study examines how the SST biases in the Atlantic and Pacific Oceans contribute to the North American precipitation biases. Experiments with the FLOR model in which SST biases are removed in the Atlantic and Pacific are carried out to determine the contribution of SST errors in each basin to precipitation statistics over North America. Tropical and North Pacific SST biases have a strong impact on northern North American precipitation, while tropical Atlantic SST biases have a dominant impact on precipitation biases in southern North America, including the western United States. Most notably, negative SST biases in the tropical Atlantic in boreal winter induce an anomalously strong Aleutian low and a southward bias in the North Pacific storm track. In boreal summer, the negative SST biases induce a strengthened North Atlantic subtropical high and Great Plains low-level jet. Each of these impacts contributes to positive annual mean precipitation biases over western North America. Both North Pacific and North Atlantic SST biases induce SST biases in remote basins through dynamical pathways, so a complete attribution of the effects of SST biases on precipitation must account for both the local and remote impacts.


2007 ◽  
Vol 20 (19) ◽  
pp. 4940-4956 ◽  
Author(s):  
Uta Krebs ◽  
A. Timmermann

Abstract Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case. The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.


Sign in / Sign up

Export Citation Format

Share Document