scholarly journals Revisiting the absolute calibration of the Greenland ice-core age-scales

2008 ◽  
Vol 4 (3) ◽  
pp. 791-807 ◽  
Author(s):  
L. Skinner

Abstract. Recently, an absolute "calibration" was proposed for the GRIP and GISP2 Greenland ice-core time scales (Shackleton et al., 2004). This calibration attempted to reconcile the stratigraphic integration of ice-core, marine and speleothem archives with the absolute age constraints that marine and speleothem records incorporate. Here we revisit this calibration in light of the new layer-counted chronology of the NGRIP ice-core (GICC05). The GICC05 age-scale differs from the proposed absolute calibration by up to 1200 years late in the last glaciation, with implications both for radiocarbon cycling and the inferred timing of North Atlantic climate events relative to absolutely dated archives (e.g. relative sea-level). By precisely aligning the stratigraphy of Iberian Margin marine cores with that of the Greenland ice-cores, it appears that either: 1) the radiocarbon content of mid-latitude Atlantic surface-waters was extremely depleted (resulting in average surface reservoir ages up to 1700 years prior to ~22 ka BP); or 2) the GICC05 age-scale includes too few years (is up to 1200 years too young). It is shown here that both of these possibilities are in fact correct to some degree. Northeast Atlantic surface reservoir ages should be revised upward by ~350 years, while the NGRIP age-scale appears to be "missing" time. These findings illustrate the importance of integrated stratigraphy as a test for our chronologies, which are rarely truly "absolute". This is an important point, since probably the worst error that we can make is to entrench and generalise a precise stratigraphical relationship on the basis of erroneous absolute age assignations.

2008 ◽  
Vol 4 (4) ◽  
pp. 295-302 ◽  
Author(s):  
L. C. Skinner

Abstract. Recently, an absolute "calibration" was proposed for the GRIP and GISP2 Greenland ice-core time scales (Shackleton et al., 2004). This calibration attempted to reconcile the stratigraphic integration of ice-core, marine and speleothem archives with the absolute age constraints that marine and speleothem records incorporate. Here we revisit this calibration in light of the new layer-counted chronology of the NGRIP ice-core (GICC05). The GICC05 age-scale differs from the proposed absolute calibration by up to 1200 years late in the last glaciation, with implications both for radiocarbon cycling and the inferred timing of North Atlantic climate events relative to radiometrically dated archives (e.g. relative sea-level). By aligning the stratigraphy of Iberian Margin marine cores with that of the Greenland ice-cores, it can be shown that either: 1) the radiocarbon content of mid-latitude Atlantic surface-waters was extremely depleted (resulting in average surface reservoir ages up to 1700 years prior to ~22 ka BP); or 2) the GICC05 age-scale includes too few years (is up to 1200 years too young). It is shown here that both of these possibilities are probably correct to some degree. Based on the assumed accuracy of coral and speleothem U-Th ages, Northeast Atlantic surface reservoir ages should be revised upward by ~350 years, while the NGRIP age-scale appears to be "missing" time. These findings illustrate the utility of integrated stratigraphy as a test for our chronologies, which are rarely truly "absolute". This is an important point, since probably the worst error that we can make is to entrench and generalise a precise stratigraphical relationship on the basis of erroneous absolute age assignations.


2008 ◽  
Vol 4 (1) ◽  
pp. 47-57 ◽  
Author(s):  
A. Svensson ◽  
K. K. Andersen ◽  
M. Bigler ◽  
H. B. Clausen ◽  
D. Dahl-Jensen ◽  
...  

Abstract. The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4±1.2 ka b2k, and the onset of GI-17 at 59.4±1.3 ka b2k. The error estimates are derived from the accumulated number of uncertain annual layers. In the 40–60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accuracy of both event durations and absolute age estimates.


2007 ◽  
Vol 3 (6) ◽  
pp. 1235-1260 ◽  
Author(s):  
K. K. Andersen ◽  
M. Bigler ◽  
H. B. Clausen ◽  
D. Dahl-Jensen ◽  
S. J. Johnsen ◽  
...  

Abstract. The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 kyr extension of the time scale such that GICC05 continuously covers the past 60 kyr. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 kyr b2k (before year AD 2000), the North Atlantic Ash Zone 2 layer in GI-15 at 55.4±1.2 kyr b2k, and the onset of GI-17 at 59.4±1.3 kyr b2k. The error estimates are derived from the accumulated number of uncertain annual layers and can be regarded as 1σ uncertainties. In the 40–60 kyr interval the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 kyr, whereas GICC05 compares well to the dating of the Hulu Cave record with absolute age differences of less than 800 years throughout the 60 kyr period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion and the Kleegruben speleothem record from the Austrian Alps, suggesting high accuracy of both event durations and absolute age estimates.


2005 ◽  
Vol 17 (4) ◽  
pp. 487-495 ◽  
Author(s):  
ERIC W. WOLFF

Antarctic ice cores have become a unique and powerful resource for studies of climate change. They contain information on past climate, on forcing factors such as greenhouse gas concentrations, and on numerous other environmental parameters. For recent centuries, sites with high snow accumulation are chosen. They have, for example, provided the only direct evidence that carbon dioxide concentrations have increased by over 30% over the last two centuries. They have provided key datasets for other greenhouse gases, and for other forcings such as solar and volcanic. Over longer timescales, the Vostok ice core has shown how greenhouse gas concentrations and climate have closely tracked one another over the last 400 000 years. Other cores have shown detailed spatial and temporal detail of climate transitions, including the Antarctic response during rapid climate events such as Dansgaard-Oeschger events. The new core from Dome C has extended the range of ice cores back beyond 800 000 years, and even older ice could be obtained in future projects.


2013 ◽  
Vol 9 (4) ◽  
pp. 1715-1731 ◽  
Author(s):  
L. Bazin ◽  
A. Landais ◽  
B. Lemieux-Dudon ◽  
H. Toyé Mahamadou Kele ◽  
D. Veres ◽  
...  

Abstract. An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120–800 ka. In this framework, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11–12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.


2021 ◽  
Author(s):  
Xavier Faïn ◽  
Rachael Rhodes ◽  
Philip Place ◽  
Vasilii Petrenko ◽  
Kévin Fourteau ◽  
...  

<p>Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. Obtaining a reliable record of atmospheric CO mixing ratios since pre-industrial times is necessary to evaluate climate-chemistry models in conditions different from today. We present high-resolution measurements of CO mixing ratios from ice cores drilled at five different sites on the Greenland ice sheet which experience a range of snow accumulation rates, mean surface temperatures, and different chemical compositions. An optical-feedback cavity-enhanced absorption spectrometer (OF-CEAS) was coupled to continuous melter systems and operated during four analytical campaigns conducted between 2013 and 2019. The CFA-based CO measurements exhibit excellent external precision (ranging 3.3 - 6.6 ppbv, 1σ), and achieve consistently low blanks (ranging from 4.1±1.2 to 12.6±4.4 ppbv). Good accuracy and absolute calibration of CFA-based CO records enable paleo-atmospheric interpretations. The five CO records all exhibit variability in CO mixing ratios that is too large and rapid to reflect past atmospheric mixing ratio changes. Complementary tests conducted on discrete ice samples demonstrate that such patterns are not related to the analytical process (i.e., production of CO from organics in the ice during melting), but very likely are related to in situ CO production within the ice before analyses. Evaluation of signal resolution and co-investigation of high-resolution records of CO and TOC show that past atmospheric CO concentration can be extracted from the records’ baselines at four sites with accumulation rates higher than 20 cm water equivalent per year (weq yr<sup>-1</sup>). However, such baselines should be taken as upper bounds of past atmospheric CO burden. CO records from four sites are combined to produce a multisite average ice core reconstruction of past atmospheric CO for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE. From 1700 to 1875 CE, this record reveals stable or slightly increasing values remaining in the 100-115 ppbv range. From 1875 to 1957 CE, the record indicates a monotonic increase from 114±4 ppbv to 147±6 ppbv. The ice-core multisite CO record exhibits an excellent overlap with the atmospheric CO record from Greenland firn air which span the 1950-2010 time period. The combined ice-core and firn air CO history, spanning 1700-2010 CE, largely exhibits patterns that are consistent with the recent anthropogenic and biomass burning CO emission inventories. This brand new time series will be compared with the most recent results from Earth System Models involved in the CMIP6-AerChemMIP multi-model exercise.</p>


Sign in / Sign up

Export Citation Format

Share Document